分析 (Ⅰ)利用二倍角以及輔助角公式基本公式將函數(shù)化為y=Asin(ωx+φ)的形式,圖象過點(diǎn)($\frac{π}{4}$,1),可得a的值.利用周期公式求函數(shù)的最小正周期.
(Ⅱ)將內(nèi)層函數(shù)看作整體,放到正弦函數(shù)的減區(qū)間上,解不等式得函數(shù)的單調(diào)遞減區(qū)間;根據(jù)k的取值,即可得x在(0,π)的減區(qū)間.
解答 解:(Ⅰ)函數(shù)f(x)=2asinxcosx+cos2x.
化解可得:f(x)=asin2x+cos2x.
∵圖象過點(diǎn)($\frac{π}{4}$,1),
即1=asin$\frac{π}{2}$+cos$\frac{π}{2}$
可得:a=1.
∴f(x)=sin2x+cos2x=$\sqrt{2}$sin(2x+$\frac{π}{4}$)
∴函數(shù)的最小正周期T=$\frac{2π}{2}=π$.
(Ⅱ)由2kπ+$\frac{π}{2}≤$2x+$\frac{π}{4}$$≤\frac{3π}{2}+2kπ$,k∈Z.
可得:$kπ+\frac{π}{8}$≤x≤$\frac{5π}{8}+kπ$,k∈Z.
函數(shù)f(x)的單調(diào)減區(qū)間為[$kπ+\frac{π}{8}$,$\frac{5π}{8}+kπ$],k∈Z.
∵x∈(0,π).
當(dāng)k=0時(shí),可得單調(diào)減區(qū)間為[$\frac{π}{8}$,$\frac{5π}{8}$].
函數(shù)f(x)在(0,π)上的單調(diào)減區(qū)間為[$\frac{π}{8}$,$\frac{5π}{8}$].
點(diǎn)評(píng) 本題主要考查對(duì)三角函數(shù)的化簡(jiǎn)能力和三角函數(shù)的圖象和性質(zhì)的運(yùn)用,利用三角函數(shù)公式將函數(shù)進(jìn)行化簡(jiǎn)是解決本題的關(guān)鍵.屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分而不必要條件 | B. | 必要而不充分條件 | ||
C. | 充分且必要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分而不必要條件 | B. | 必要而不充分條件 | ||
C. | 充分必要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com