【題目】如圖,已知拋物線的焦點(diǎn)為,準(zhǔn)線為,過點(diǎn)的直線交拋物線于,兩點(diǎn),點(diǎn)在準(zhǔn)線上的投影為,若是拋物線上一點(diǎn),且.

1)證明:直線經(jīng)過的中點(diǎn);

2)求面積的最小值及此時(shí)直線的方程.

【答案】1)詳見解析;(2)面積最小值為16,此時(shí)直線方程為.

【解析】

1)由題意得拋物線的焦點(diǎn)坐標(biāo)和準(zhǔn)線方程,設(shè),直線,可得的坐標(biāo),聯(lián)立方程組,結(jié)合韋達(dá)定理,可得的斜率和直線的斜率,進(jìn)而可得直線的方程,與拋物線聯(lián)立可得兩根之和,可得中點(diǎn)的縱坐標(biāo)與的相同,即可證出直線經(jīng)過的中點(diǎn);

2)根據(jù)弦長公式求出,利用點(diǎn)到直線的距離公式,求出點(diǎn)到直線的距離為,運(yùn)用,結(jié)合均值不等式求出,即可求出直線的方程.

解:(1)由題意得拋物線的焦點(diǎn),準(zhǔn)線方程為,

設(shè),直線,

聯(lián)立,

可得

顯然,可得

因?yàn)?/span>,

所以,

故直線,

.

,

所以的中點(diǎn)的縱坐標(biāo),即,

所以直線經(jīng)過的中點(diǎn).

2)所以

,

設(shè)點(diǎn)到直線的距離為,

.

所以,

當(dāng)且僅當(dāng),即,

時(shí),直線的方程為:,

時(shí),直線的方程為:.

另解:

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】國家統(tǒng)計(jì)局服務(wù)業(yè)調(diào)查中心和中國物流與采購聯(lián)合會(huì)發(fā)布的201810月份至20199月份共12個(gè)月的中國制造業(yè)采購經(jīng)理指數(shù)(PMI)如下圖所示.則下列結(jié)論中錯(cuò)誤的是(

A.12個(gè)月的PMI值不低于50%的頻率為

B.12個(gè)月的PMI值的平均值低于50%

C.12個(gè)月的PMI值的眾數(shù)為49.4%

D.12個(gè)月的PMI值的中位數(shù)為50.3%

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2axb,g(x)=ex(cxd),若曲線yf(x)和曲線yg(x)都過點(diǎn)P(0,2),且在點(diǎn)P處有相同的切線y=4x+2.

(1)求a,b,c,d的值;

(2)若x≥-2時(shí),恒有f(x)≤kg(x),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的離心率為,直線交橢圓、兩點(diǎn),橢圓的右頂點(diǎn)為,且滿足.

(1)求橢圓的方程;

(2)若直線與橢圓交于不同兩點(diǎn)、,且定點(diǎn)滿足,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)討論函數(shù)的單調(diào)性;

2)若函數(shù)有兩個(gè)極值點(diǎn),證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,圓的直徑,為圓周上不與點(diǎn)重合的點(diǎn),垂直于圓所在的平面,

1)求證:;

2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)若函數(shù)有兩個(gè)零點(diǎn),證明:;

(2)設(shè)函數(shù)的兩個(gè)零點(diǎn)為,.證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】己知函數(shù),.

1)求函數(shù)的零點(diǎn)個(gè)數(shù);

2)若對(duì)任意恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中.

(Ⅰ)若,求函數(shù)的極值;

(Ⅱ)設(shè).上恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案