4.已知命題p:“方程x2+y2-x+y+m=0對應(yīng)的曲線是圓”,命題q:“函數(shù)f(x)=lg(mx2-4x+m)的定義域為R”.若這兩個命題中只有一個是真命題,求實數(shù)m的取值范圍.

分析 求出p,q為真命題時m的范圍,分類討論p真q假時,p假q真時判斷,最后求并集.

解答 解:若p真,由(-1)2+12-4m>0得:$m<\frac{1}{2}$.…(4分)
若q真,需滿足△<0且m>0,即$\left\{\begin{array}{l}m>0\\ 16-4{m^2}<0\end{array}\right.$,解得m>2.…(8分)
p真q假時,$m<\frac{1}{2}$;p假q真時,m>2.
所以$m∈(-∞,\frac{1}{2})∪(2,+∞)$.…(12分)

點評 本題考查了命題的真假判斷和對命題的分類討論,屬于基礎(chǔ)題型,應(yīng)熟練掌握.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.定義在R上的函數(shù)f(x)的導(dǎo)函數(shù)為f'(x),滿足xf'(x)+f(x)>x,則不等式$({x-4})f({x-4})-4f(4)<\frac{x^2}{2}-4x$的解集為(-∞,8).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知等差數(shù)列{an}的公差d≠0,且a1,a3,a13成等比數(shù)列,若a1=1,Sn為數(shù)列{an}的前n項和,則$\frac{2{S}_{n}+16}{{a}_{n}+3}$的最小值為( 。
A.4B.3C.2$\sqrt{3}$-2D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知圓C:(x-1)2+(y+2)2=5,直線l1:2x-3y+6=0,則與l1平行且過圓C圓心的直線l的方程為2x-3y-8=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知具有線性相關(guān)的兩個變量x,y之間的一組數(shù)據(jù)如表:
x01234
y24.24.54.6m
且回歸方程是y=0.65x+2.7,則m=( 。
A.5.6B.5.3C.5.0D.4.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.乓球臺面被網(wǎng)分隔成甲、乙兩部分,如圖,甲上有兩個不相交的區(qū)域A、B,乙被劃分為兩個不相交的區(qū)域C、D.某次測試要求隊員接到落點在甲上的來球后向乙回球.規(guī)定:回球一次,落點在C上記3分,在D上記1分,其它情況記0分.對落點在A上的來球,隊員小明回球的落點在C上的概率為$\frac{1}{2}$,在D上的概率為$\frac{1}{3}$;對落點在B上的來球,小明回球的落點在C上的概率為$\frac{1}{5}$,在D上的概率為$\frac{3}{5}$.假設(shè)共有兩次來球且落在A、B上各一次,小明的兩次回球互不影響.求:
(1)小明兩次回球的落點中恰有一次的落點在乙上的概率;
(2)兩次回球結(jié)束后,小明得分之和ξ的分布列與均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若a,b∈R,則復(fù)數(shù)(a2-6a+10)+(-b2+4b-5)i對應(yīng)的點在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知數(shù)列{an}的前n項和${S_n}={2^{n+2}}-4{\;}^{\;}({n∈{N^*}})$,數(shù)列{bn}滿足${b_{n+1}}={b_n}+\frac{1}{2}$,b1=1
(1)分別求數(shù)列{an}、{bn}的通項公式;
(2)若數(shù)列{cn}滿足cn=an•bn,Tn是數(shù)列{cn}的前n項和,若存在正實數(shù)k,使不等式$k({n^2}-9n+36){T_n}>6{n^2}{a_n}$對于一切的n∈N*恒成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.命題“?x0∈∁RQ,x02∈Q”的否定是( 。
A.?x0∈∁RQ,x02∈QB.?x0∈∁RQ,x02∉QC.?x∉∁RQ,x2∈QD.?x∈∁RQ,x2∉Q

查看答案和解析>>

同步練習(xí)冊答案