15.已知函數(shù)f(x)=$\left\{{\begin{array}{l}{x+2,}&{x≤0}\\{-x+2,}&{x>0}\end{array}}$,則不等式f(2)≥f(lgx)的解集為$(0,\frac{1}{100}]∪[100,+∞)$.

分析 求出f(2)=0,通過(guò)討論lgx的范圍,求出不等式的解集,取并集即可.

解答 解:f(2)=0,
0<x≤1時(shí),f(lgx)=lgx+2≤0,
解得:0<x≤$\frac{1}{100}$,
x>1時(shí),f(lgx)=-x+2≤0,解得:x≥100
綜上所述,不等式f(x)≥1的解集為(0,$\frac{1}{100}$]∪[100,+∞),
故答案為:$(0,\frac{1}{100}]∪[100,+∞)$.

點(diǎn)評(píng) 本題考查了分段函數(shù),考查對(duì)數(shù)函數(shù)的性質(zhì)以及解不等式問(wèn)題,是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.某班舉行的聯(lián)歡會(huì)由5個(gè)節(jié)目組成,節(jié)目演出順序要求如下:節(jié)目甲不能排在第一個(gè),并且節(jié)目甲必須和節(jié)目乙相鄰,則該班聯(lián)歡會(huì)節(jié)目演出順序的編排方案共有42種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.設(shè)實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{y≤x}\\{y≥0}\\{y≤-2x+6}\end{array}\right.$,則x+3y的最大值為,8;若x2+4y2≤a恒成立,則實(shí)數(shù)a為20.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.不等式$\frac{3x}{2x+1}≤1$的解集為(  )
A.(-∞,1]B.$[{-\frac{1}{2},1}]$C.$({-\frac{1}{2},1}]$D.$({-∞,-\frac{1}{2}})∪[{1,+∞})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.5個(gè)人排成一排,要求甲排在中間,乙不排在兩端,記滿足條件的所有不同排法的種數(shù)為m.
(1)求m的值;
(2)求$(\sqrt{x}-\frac{2}{x})^{\frac{3m}{4}}$的展開式的常數(shù)項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.若不等式-2≤x2-2ax+a≤0有唯一解,則a的值為0或1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.如圖,過(guò)點(diǎn)E(1,0)的直線與圓O:x2+y2=4相交于A、B兩點(diǎn),過(guò)點(diǎn)C(2,0)且與AB垂直的直線與圓O的另一交點(diǎn)為D.
(1)當(dāng)點(diǎn)B坐標(biāo)為(0,-2)時(shí),求直線CD的方程;
(2)求四邊形ABCD面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.某學(xué)校為了調(diào)查喜歡語(yǔ)文學(xué)科與性別的關(guān)系,隨機(jī)調(diào)查了一些學(xué)生情況,具體數(shù)據(jù)如表:
調(diào)查統(tǒng)計(jì)不喜歡語(yǔ)文喜歡語(yǔ)文
1310
720
為了判斷喜歡語(yǔ)文學(xué)科是否與性別有關(guān)系,根據(jù)表中的數(shù)據(jù),得到K2的觀測(cè)值k=$\frac{50×(13×20-10×7)2}{23×27×20×30}$≈4.844,因?yàn)閗≥3.841,根據(jù)下表中的參考數(shù)據(jù):
P(K2≥k00.500.400.250.150.100.050.0250.0100.0050.001
k00.4550.7081.3232.0722.7063.8415.0246.6357.87910.828
判定喜歡語(yǔ)文學(xué)科與性別有關(guān)系,那么這種判斷出錯(cuò)的可能性為(  )
A.95%B.50%C.25%D.5%

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知函數(shù)f(x)=sin(ωx+φ)(ω>0,0≤φ≤π)是R上的偶函數(shù),其圖象關(guān)于點(diǎn)$M(\frac{3π}{4},0)$對(duì)稱,且在區(qū)間$[{0,\frac{π}{2}}]$上是單調(diào)函數(shù),則ω的值是( 。
A.$\frac{2}{3}$B.2C.$\frac{2}{3}$或2D.無(wú)法確定

查看答案和解析>>

同步練習(xí)冊(cè)答案