4.某學(xué)校為了調(diào)查喜歡語(yǔ)文學(xué)科與性別的關(guān)系,隨機(jī)調(diào)查了一些學(xué)生情況,具體數(shù)據(jù)如表:
調(diào)查統(tǒng)計(jì)不喜歡語(yǔ)文喜歡語(yǔ)文
1310
720
為了判斷喜歡語(yǔ)文學(xué)科是否與性別有關(guān)系,根據(jù)表中的數(shù)據(jù),得到K2的觀測(cè)值k=$\frac{50×(13×20-10×7)2}{23×27×20×30}$≈4.844,因?yàn)閗≥3.841,根據(jù)下表中的參考數(shù)據(jù):
P(K2≥k00.500.400.250.150.100.050.0250.0100.0050.001
k00.4550.7081.3232.0722.7063.8415.0246.6357.87910.828
判定喜歡語(yǔ)文學(xué)科與性別有關(guān)系,那么這種判斷出錯(cuò)的可能性為( 。
A.95%B.50%C.25%D.5%

分析 根據(jù)K2的觀測(cè)值k≥3.841,對(duì)照臨界表中參考數(shù)據(jù),即可得出結(jié)論.

解答 解:根據(jù)表中的數(shù)據(jù),得到K2的觀測(cè)值
k=$\frac{50×(13×20-10×7)2}{23×27×20×30}$≈4.844,
因?yàn)閗≥3.841,根據(jù)表中參考數(shù)據(jù)知,
判定喜歡語(yǔ)文學(xué)科與性別有關(guān)系,
這種判斷出錯(cuò)的可能性為5%.
故選:D.

點(diǎn)評(píng) 本題考查了獨(dú)立性檢驗(yàn)的應(yīng)用問(wèn)題,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.某校高一年級(jí)甲班共48人,其中優(yōu)秀生16人,中等生24人,學(xué)困生8人,現(xiàn)采用分層抽樣的方法從這些學(xué)生中抽取6名學(xué)生做學(xué)習(xí)習(xí)慣的調(diào)查.
(1)求應(yīng)從優(yōu)秀生、中等生、學(xué)困生中分別抽取的學(xué)生人數(shù);
(2)若從抽取的6名學(xué)生中隨機(jī)抽取2名學(xué)生做進(jìn)一步的數(shù)據(jù)分析,
①列出所有可能的抽取的結(jié)果;
②求抽取的2名學(xué)生均為中等生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知函數(shù)f(x)=$\left\{{\begin{array}{l}{x+2,}&{x≤0}\\{-x+2,}&{x>0}\end{array}}$,則不等式f(2)≥f(lgx)的解集為$(0,\frac{1}{100}]∪[100,+∞)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知兩曲線f(x)=cosx與g(x)=$\sqrt{3}$sinx的一個(gè)交點(diǎn)為P,則點(diǎn)P到x軸的距離為$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.如圖,已知多面體EABCDF的底面ABCD是邊長(zhǎng)為2的正方形,EA⊥底面ABCD,F(xiàn)D∥EA,且FD=$\frac{1}{2}$EA=1.則直線EB與平面ECF所成角的正弦值為$\frac{\sqrt{3}}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.下列說(shuō)法正確的是(  )
A.“p∨q”是“p∧q”的充分不必要條件
B.樣本10,6,8,5,6的標(biāo)準(zhǔn)差是3.3
C.K2是用來(lái)判斷兩個(gè)分類變量是否相關(guān)的隨機(jī)變量,當(dāng)K2的值很小時(shí)可以推定兩類變量不相關(guān)
D.設(shè)有一個(gè)回歸直線方程為$\widehat{y}$=2-1.5x,則變量x每增加一個(gè)單位,$\widehat{y}$平均減少1.5個(gè)單位.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.在數(shù)列{an}中,a1=1,${a_{n+1}}=\frac{n+2}{n}{a_n}+1$,其中n=1,2,3,….
(Ⅰ) 計(jì)算a2,a3,a4,a5的值;
(Ⅱ) 根據(jù)計(jì)算結(jié)果,猜想{an}的通項(xiàng)公式,并用數(shù)學(xué)歸納法加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.離心率為$\frac{{\sqrt{3}}}{2}$,且過(guò)點(diǎn)(2,0)的橢圓的標(biāo)準(zhǔn)方程是( 。
A.$\frac{x^2}{4}+{y^2}=1$B.$\frac{x^2}{4}+{y^2}=1$或${x^2}+\frac{y^2}{4}=1$
C.x2+4y2=1D.$\frac{x^2}{4}+{y^2}=1$或$\frac{x^2}{4}+\frac{y^2}{16}=1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.如圖是某工廠對(duì)甲乙兩個(gè)車(chē)間各10名工人生產(chǎn)的合格產(chǎn)品的統(tǒng)計(jì)結(jié)果的莖葉圖.設(shè)甲、乙的中位數(shù)分別為x、x,甲、乙的方差分別為s2、s2,則(  )
A.x<x,s2<s2B.x>x,s2>s2
C.x>x,s2<s2D.x<x,s2>s2

查看答案和解析>>

同步練習(xí)冊(cè)答案