19.已知集合A={0,1,2},B={x|1≤x≤4},集合A∩B=(  )
A.B.{1,2}C.[1,2]D.(1,2)

分析 找出A與B的交集即可.

解答 解:集合A={0,1,2},B={x|1≤x≤4},集合A∩B={1,2},
故選:B

點評 此題考查了交集及其運算,熟練掌握交集的定義是解本題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

9.天氣預報說,在近期每天下雨的概率均為40%,用計算機隨機函數(shù)產(chǎn)生0到9之間整數(shù)進行模擬,記產(chǎn)生的數(shù)為1,2,3,4時表示下雨,產(chǎn)生的數(shù)為5,6,7,8,9,0時表示不下雨,每次模擬產(chǎn)生3個數(shù),20次模擬得到的實驗數(shù)據(jù)如下:
907966191925271932812458569683
431257393027556488730113537989
則近3天中恰有2天下雨的概率估計為( 。
A.0.2B.0.25C.0.35D.0.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的上任意一點M到兩個焦點的距離和是4,橢圓的焦距是2,則橢圓C的標準方程是$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.在直角坐標系中,以原點O為極點,x軸的正半軸為極軸建立極坐標系,點A的極坐標為(4,$\frac{π}{3}$),點B的極坐標為(2$\sqrt{2}$,$\frac{π}{4}$),曲線C的直角坐標方程為:x2+(y-1)2=1.
(Ⅰ)求曲線C和直線AB的極坐標方程;
(Ⅱ)過點O的射線l交曲線C于M點,交直線AB于N點,若|OM|•|ON|=4,求射線l所在直線的直角坐標方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知函數(shù)f(x)=asinx+bcosx(a,b為常數(shù)且a≠0,x∈R).當x=$\frac{π}{4}$時,f(x)取得最大值.
?(1)計算f($\frac{11π}{4}$)的值;
?(2)設g(x)=f($\frac{π}{4}$-x),判斷函數(shù)g(x)的奇偶性,并說明理由.??

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.已知數(shù)列{an}的是等差數(shù)列,a1≥-2,a2≤1,a3≥0,則a4≥3的概率是$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.非常數(shù)數(shù)列{an}滿足an-1+an+1=2an(n≥2),則$\frac{{a}_{5}-{a}_{4}}{{a}_{3}-{a}_{2}}$的值為(  )
A.-1B.1C.2D.-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知數(shù)列{an},a1=2,an=$\frac{1}{n}$+(1-$\frac{1}{n}$)an-1(n≥2,n∈N*).
(1)證明:數(shù)列{nan}是等差數(shù)列;
(2)記bn=$\frac{1}{{n}^{2}{a}_{n}}$,{bn}的前n項和Sn,求證Sn<1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知五邊形ABCDE是由直角梯形ABCD和等腰直角三角形ADE構成,如圖所示,AB⊥AD,AE⊥DE,AB∥CD,且AB=2CD=2DE=4,將五邊形ABCDE沿著AD折起,且使平面ABCD⊥平面ADE.
(Ⅰ)若M為DE中點,邊BC上是否存在一點N,使得MN∥平面ABE?若存在,求$\frac{BN}{BC}$的值;若不存在,說明理由;
(Ⅱ)求四面體B-CDE的體積.

查看答案和解析>>

同步練習冊答案