分析 首先判斷a>b,由構(gòu)成三角形的條件可得b+c>a且a+b>c,即有$\sqrt{{x}^{2}+xy+{y}^{2}}$+m$\sqrt{xy}$>x+y且x+y+$\sqrt{{x}^{2}+xy+{y}^{2}}$>m$\sqrt{xy}$.運(yùn)用參數(shù)分離和換元法,結(jié)合基本不等式和函數(shù)的單調(diào)性,可得最值,進(jìn)而得到m的范圍.
解答 解:x>0,y>0,a=x+y,$b=\sqrt{{x^2}+xy+{y^2}}$,$c=m\sqrt{xy}$,
由a2-b2=(x+y)2-(x2+xy+y2)=xy>0,
可得a>b,
由題意可得要構(gòu)成三角形,必須
b+c>a且a+b>c,
即有$\sqrt{{x}^{2}+xy+{y}^{2}}$+m$\sqrt{xy}$>x+y
且x+y+$\sqrt{{x}^{2}+xy+{y}^{2}}$>m$\sqrt{xy}$.
由m<$\frac{x+y+\sqrt{{x}^{2}+xy+{y}^{2}}}{\sqrt{xy}}$,
$\frac{x+y+\sqrt{{x}^{2}+xy+{y}^{2}}}{\sqrt{xy}}$≥$\frac{2\sqrt{xy}+\sqrt{2xy+xy}}{\sqrt{xy}}$=2+$\sqrt{3}$,
當(dāng)且僅當(dāng)x=y取得等號(hào).
可得m<2+$\sqrt{3}$①
由m>$\frac{x+y-\sqrt{{x}^{2}+xy+{y}^{2}}}{\sqrt{xy}}$,
$\frac{x+y-\sqrt{{x}^{2}+xy+{y}^{2}}}{\sqrt{xy}}$=$\sqrt{\frac{x}{y}}$+$\sqrt{\frac{y}{x}}$-$\sqrt{\frac{x}{y}+\frac{y}{x}+1}$,
令u=$\sqrt{\frac{x}{y}}$,則上式為u+$\frac{1}{u}$-$\sqrt{{u}^{2}+\frac{1}{{u}^{2}}+1}$.
可令t=u+$\frac{1}{u}$(t≥2),可得上式為t-$\sqrt{{t}^{2}-1}$=$\frac{1}{t+\sqrt{{t}^{2}-1}}$,
可得在[2,+∞)遞減,可得t-$\sqrt{{t}^{2}-1}$≤2-$\sqrt{3}$,
即有m>2-$\sqrt{3}$②
由①②可得m的取值范圍是(2-$\sqrt{3}$,2+$\sqrt{3}$).
故答案為:(2-$\sqrt{3}$,2+$\sqrt{3}$).
點(diǎn)評(píng) 本題考查構(gòu)成三角形的條件,注意運(yùn)用轉(zhuǎn)化思想,考查不等式恒成立問(wèn)題的解法,注意運(yùn)用基本不等式,同時(shí)考查換元法和單調(diào)性的運(yùn)用,考查運(yùn)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | 2 | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (1,$\frac{9}{10}$+$\frac{ln2}{5}$] | B. | (1,+∞) | C. | (1,$\frac{9}{10}$+$\frac{ln2}{5}$) | D. | [1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {-3,-2,-1} | B. | {-1,2,3} | C. | {-1,0,1,2,3} | D. | {0,1} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ex2-ex1>lnx2-lnx1 | B. | ex2-ex1<lnx2-lnx1 | ||
C. | x2ex1>x1ex2 | D. | x2ex1<x1ex2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充分必要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com