【題目】(1)已知函數(shù),求函數(shù)在時的值域;
(2)函數(shù)有兩個不同的極值點(diǎn),,
①求實(shí)數(shù)的取值范圍;
②證明:.
(本題中可以參與的不等式:,)
【答案】(1)(2)①②詳見解析
【解析】
(1)首先可對函數(shù)進(jìn)行求導(dǎo),然后分析函數(shù)在上的單調(diào)性并求出最值,最后即可求出函數(shù)在上的值域;
(2)①首先將“有兩個不同極值點(diǎn)”轉(zhuǎn)化為“有兩個不同的正實(shí)根”,再根據(jù)(1)中所給出的函數(shù)性質(zhì)即可得出結(jié)果;
②可利用分析法進(jìn)行證明。
(1),令,,
在上有,在上有,
從而有在上為單增函數(shù),在上為單減函數(shù),
,且當(dāng)時,,故函數(shù)的值域?yàn)?/span>;
(2)①,
題意有兩個不同極值點(diǎn)即有兩個不同的正實(shí)數(shù)根,即有兩個不同的正實(shí)根,
由(1)題函數(shù)的性質(zhì)知:,故;
②由條件有兩個不同的極值點(diǎn),知:
,于是有
所以,即
要證成立,只需證明
只需證
只需證
只需證
只需證,令,
只需證,,而題中已給出該不等式成立.
即證。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,已知直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,直線與曲線交于兩點(diǎn).
(1)求直線l的普通方程和曲線的直角坐標(biāo)方程;
(2)已知點(diǎn)的極坐標(biāo)為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn),直線為平面內(nèi)的動點(diǎn),過點(diǎn)作直線的垂線,垂足為點(diǎn),且.
(1)求動點(diǎn)的軌跡的方程;
(2)過點(diǎn)作兩條互相垂直的直線與分別交軌跡于四點(diǎn).求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]
在極坐標(biāo)系中,O為極點(diǎn),點(diǎn)在曲線上,直線l過點(diǎn)且與垂直,垂足為P.
(1)當(dāng)時,求及l的極坐標(biāo)方程;
(2)當(dāng)M在C上運(yùn)動且P在線段OM上時,求P點(diǎn)軌跡的極坐標(biāo)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】動圓P過點(diǎn),且與直線相切,設(shè)動圓圓心的軌跡為曲線.
(1)求曲線的方程;
(2)過點(diǎn)F的直線交曲線C于A,B兩個不同的點(diǎn),過點(diǎn)A,B分別作曲線C的切線,且二者相交于點(diǎn)M,若直線的斜率為,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年來,共享單車已經(jīng)悄然進(jìn)入了廣大市民的日常生活,并慢慢改變了人們的出行方式.為了更好地服務(wù)民眾,某共享單車公司在其官方中設(shè)置了用戶評價反饋系統(tǒng),以了解用戶對車輛狀況和優(yōu)惠活動的評價.現(xiàn)從評價系統(tǒng)中選出條較為詳細(xì)的評價信息進(jìn)行統(tǒng)計(jì),車輛狀況的優(yōu)惠活動評價的列聯(lián)表如下:
對優(yōu)惠活動好評 | 對優(yōu)惠活動不滿意 | 合計(jì) | |
對車輛狀況好評 | |||
對車輛狀況不滿意 | |||
合計(jì) |
(1)能否在犯錯誤的概率不超過的前提下認(rèn)為優(yōu)惠活動好評與車輛狀況好評之間有關(guān)系?
(2)為了回饋用戶,公司通過向用戶隨機(jī)派送每張面額為元,元,元的 三種騎行券.用戶每次使用掃碼用車后,都可獲得一張騎行券.用戶騎行一次獲得元券,獲得元券的概率分別是,,且各次獲取騎行券的結(jié)果相互獨(dú)立.若某用戶一天使用了兩次該公司的共享單車,記該用戶當(dāng)天獲得的騎行券面額之和為,求隨機(jī)變量的分布列和數(shù)學(xué)期望.
參考數(shù)據(jù):
參考公式:,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某班上午有五節(jié)課,分別安排語文,數(shù)學(xué),英語,物理,化學(xué)各一節(jié)課.要求語文與化學(xué)相鄰,數(shù)學(xué)與物理不相鄰,且數(shù)學(xué)課不排第一節(jié),則不同排課法的種數(shù)是
A. 24B. 16C. 8D. 12
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年10月,德國爆發(fā)出“芳香烴門”事件,即一家權(quán)威的檢測機(jī)構(gòu)在德國銷售的奶粉中隨機(jī)抽檢了16款(德國4款,法國8款,荷蘭4款),其中8款檢測出芳香烴礦物油成分,此成分會嚴(yán)重危害嬰幼兒的成長,有些奶粉已經(jīng)遠(yuǎn)銷至中國.A地區(qū)聞訊后,立即組織相關(guān)檢測員對這8款品牌的奶粉進(jìn)行抽檢,已知該地區(qū)有6家嬰幼兒用品商店在售這幾種品牌的奶粉,甲、乙、丙3名檢測員分別負(fù)責(zé)進(jìn)行檢測,每人至少抽檢1家商店,且檢測過的商店不重復(fù)檢測,則甲檢測員檢測2家商店的概率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知直線與曲線相切于兩點(diǎn),則對于函數(shù),以下結(jié)論成立的是( )
A.有3個極大值點(diǎn),2個極小值點(diǎn)B.有2個零點(diǎn)
C.有2個極大值點(diǎn),沒有極小值點(diǎn)D.沒有零點(diǎn)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com