4.為了普及環(huán)保知識,增強環(huán)保意識,某大學(xué)隨機抽取30名學(xué)生參加環(huán)保知識測試,得分(十分制)如圖所示,假設(shè)得分的中位數(shù)為me,眾數(shù)為
mo,則( 。
A.me=moB.mo<meC.me<moD.不能確定

分析 由頻率分布直方圖分別求出眾數(shù)mo和中位數(shù)me,由此能求出結(jié)果.

解答 解:由頻率分布直方圖得:
眾數(shù)mo=5,
得分的中位數(shù)為me=$\frac{5+6}{2}$=5.5,
∴m0<me
故選:B.

點評 本題考查命題真假的判斷,是基礎(chǔ)題,解題時要認真審題,注意頻率分布直方圖的性質(zhì)的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知正實數(shù)a,b 滿足a+4b=8,那么ab的最大值是4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.我國是世界上嚴(yán)重缺水的國家,城市缺水尤為突出.某市為了制定合理的節(jié)水方案,從該市隨機調(diào)查了100位居民,獲得了他們某月的用水量,整理得到如圖的頻率分布直方圖.
(Ⅰ)求圖中a的值;
(Ⅱ)設(shè)該市有500萬居民,估計全市居民中月均用水量不低于3噸的人數(shù),說明理由:
(Ⅲ)估計本市居民的月用水量平均數(shù)(同一組中的數(shù)據(jù)用該區(qū)間的中點值代表).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知數(shù)列{an}的前n項和為Sn,且滿足數(shù)列{2an}是等比數(shù)列,若a4+a1009+a2014=$\frac{3}{2}$,則S2017的值是$\frac{2017}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知函數(shù)f(x)(x∈R)滿足f(-x)=4-f(x),若函數(shù)y=$\frac{2x+1}{x}$與 y=f(x) 圖象的交點為(x1,y1),(x2,y2),…,(xm,ym),則$\sum_{i=1}^{m}$(xi+yi)=2m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知函數(shù)f(log2x)=x2+2x.
(1)求函數(shù)f(x)的解析式;
(2)若方程f(x)=a•2x-4在區(qū)間(0,2)內(nèi)有兩個不相等的實根,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知過點A(0,1)且斜率為k的直線?與圓C:(x-2)2+(y-3)2=1交于M,N兩點.
(I)寫出直線?的方程和圓C的圓心坐標(biāo)和半徑,并k的取值范圍;
(II)若$\overrightarrow{OM}$•$\overrightarrow{ON}$=12,其中O為坐標(biāo)原點,求|MN|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.“ab<0”是“a>0且b<0”的( 。
A.必要不充分條件B.充要條件
C.充分不必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.正方形ABCD的邊長為1,把三角形ABD沿對角線BD翻折,使得面ABD⊥面BCD后,有如下四個結(jié)論:
(1)AC⊥BD;(2)△ACD是等邊三角形;(3)四面體A-BCD的表面積為$1+\frac{{\sqrt{3}}}{2}$.(4)四面體A-BCD的內(nèi)切球半徑是$\frac{{2\sqrt{3}-\sqrt{6}}}{6}$.
則正確結(jié)論的序號為(1)(2)(3).

查看答案和解析>>

同步練習(xí)冊答案