12.設(shè)集合M={y|y=|cos2x-sin2x|,x∈R},$N=\{x||\frac{2x}{{1-\sqrt{3}i}}|<1,i$為虛數(shù)單位,x∈R},則M∩N為{x|0≤x<1}.

分析 先分別求出集合M和N,由此利用交集定義能求出M∩N.

解答 解:∵集合M={y|y=|cos2x-sin2x|,x∈R}={y|y=|cos2x|}={y|0≤y≤1},
$N=\{x||\frac{2x}{{1-\sqrt{3}i}}|<1,i$為虛數(shù)單位,x∈R}={x|-1<x<1},
∴M∩N={x|0≤x<1}.
故答案為:{x|0≤x<1}.

點評 本題考查交集的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意交集定義的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.從1,2,3,4,5,6,7這七個數(shù)中,隨機抽取3個不同的數(shù),則這3個數(shù)的和為偶數(shù)概率是( 。
A.$\frac{3}{7}$B.$\frac{17}{35}$C.$\frac{3}{5}$D.$\frac{19}{35}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.(1)求值sin2120°+cos180°+tan45°-cos2(-330°)+sin(-210°)
(2)已知tanα=$\sqrt{3}$,π<α<$\frac{3}{2}$π,求sinα-cosα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)$f(x)=1+cos(2x+\frac{3π}{2})-\sqrt{3}cos(π-2x)$.
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)若關(guān)于x的方程f(x)-m=2在$x∈[{0,\frac{π}{2}}]$上有兩個不同的解,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知復(fù)數(shù)z=(3-2i)2+2i(i為虛數(shù)單位),則z虛部為-10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若復(fù)數(shù)$z=({{a^2}-3})-({a+\sqrt{3}})i$為純虛數(shù),則$\frac{{a+{i^{2011}}}}{{1+\sqrt{3}i}}$=-i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.在正方體ABCD-A1B1C1D1中,若E為AB的中點,則A1E與CD1所成角的余弦值( 。
A.$\frac{{\sqrt{10}}}{10}$B.$\frac{{3\sqrt{10}}}{10}$C.$\frac{1}{10}$D.$\frac{3}{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.求證:(1)$\sqrt{6}$+$\sqrt{7}$>2$\sqrt{2}$+$\sqrt{5}$;     (2)a2+b2+c2≥ab+ac+bc.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知曲線C1的參數(shù)方程是$\left\{{\begin{array}{l}{x=2cosϕ}\\{y=sinϕ}\end{array}}$(ϕ為參數(shù)),以坐標(biāo)原點為極點,x軸的正半軸為極軸,建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程是ρ(tanα•cosθ-sinθ)=1.(其中α為常數(shù),α∈(0,π),且α≠$\frac{π}{2}$),點A,B(A在x軸下方)是曲線C1與C2的兩個不同的交點.
(1)求曲線C1的普通方程與C2的直角坐標(biāo)方程;
(2)求|AB|的最大值及此時點B的直角坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案