分析 由已知條件列出方程組,求解可得a的值,然后代入$\frac{{a+{i^{2011}}}}{{1+\sqrt{3}i}}$,利用復數(shù)代數(shù)形式的乘除運算化簡可得答案.
解答 解:∵$z=({{a^2}-3})-({a+\sqrt{3}})i$為純虛數(shù),
∴$\left\{\begin{array}{l}{{a}^{2}-3=0}\\{-(a+\sqrt{3})≠0}\end{array}\right.$,解得$a=\sqrt{3}$.
則$\frac{{a+{i^{2011}}}}{{1+\sqrt{3}i}}$=$\frac{\sqrt{3}+({i}^{4})^{502}{i}^{3}}{1+\sqrt{3}i}=\frac{(\sqrt{3}-i)(1-\sqrt{3}i)}{(1+\sqrt{3}i)(1-\sqrt{3}i)}$=$\frac{-4i}{4}=-i$.
故答案為:-i.
點評 本題考查了復數(shù)代數(shù)形式的乘除運算,考查了復數(shù)的基本概念,是基礎題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [5,15] | B. | [10,15] | C. | [-15,10] | D. | [-15,35] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | y=x-1 | B. | y=$\frac{{{x^2}-1}}{x+1}$ | C. | y=|x-1| | D. | y=${(\frac{x-1}{{\sqrt{x-1}}})^2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com