分析 首先求出滿足條件的區(qū)域面積,利用面積比求得概率.
解答 解:由題意,在[0,2]之間選出兩個(gè)數(shù)x,y,
對應(yīng)區(qū)域?yàn)檫呴L為2 的正方形,面積為4,
而使這兩個(gè)數(shù)的平方和小于1的區(qū)域是半徑為1 的圓的面積的$\frac{1}{4}$,如圖
由幾何概型的公式得到所求概率是$\frac{\frac{1}{4}π×{1}^{2}}{4}=\frac{π}{16}$;
故答案為:$\frac{π}{16}$
點(diǎn)評(píng) 本題考查了幾何概型的概率求法;關(guān)鍵是明確幾何測度為滿足條件的區(qū)域面積.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若a>b,c>d,則ac>bc | B. | 若ac>bc,則a>b | ||
C. | 若$\frac{a}{{c}^{2}}$<$\frac{{c}^{2}}$,則a<b | D. | 若a>b,c>d,則a-c>b-d |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a2+b2≥8 | B. | ab≥4 | C. | a2+b2≤8 | D. | ab≤2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {0,1,2} | B. | {1,2} | C. | {1,2,4} | D. | {1,4} |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com