【題目】如圖①,在直角梯形ABCD中,AB∥CD,AB⊥AD,且AB=AD=CD=1.現(xiàn)以AD為一邊向梯形外作正方形ADEF,然后沿邊AD將正方形ADEF翻折,使平面ADEF與平面ABCD垂直,M為ED的中點,如圖②.
(1)求證:AM∥平面BEC;
(2)求點D到平面BEC的距離.
【答案】(1)證明見解析(2)
【解析】
取EC的中點為N,連接MN,BN,利用中位線可知四邊形ABNM為平行四邊形,可得BN∥AM,由線面平行的判定定理即可證明(2)根據(jù)又VE-BCD=VD-BCE,由等體積法求出點到面的距離即可.
證明:取EC的中點為N,連接MN,BN.
在△EDC中,M,N分別為ED,EC的中點,所以MN∥CD,且MN=CD.由已知AB∥CD,AB=CD,得MN∥AB,且MN=AB.故四邊形ABNM為平行四邊形,因此BN∥AM.
又因為BN平面BEC,且AM平面BEC,所以AM∥平面BEC.
(2)解:由已知得BC⊥BD,BC⊥DE,又BD∩DE=D,所以BC⊥平面BDE.而BE平面BDE,所以BC⊥BE.
故S△BCE=BE·BC=××=.
S△BCD=BD·BC=××=1.
又VE-BCD=VD-BCE,設點D到平面BEC的距離為h,
則S△BCD·DE=S△BCE·h,所以h==.
科目:高中數(shù)學 來源: 題型:
【題目】甲、乙兩同學在復習數(shù)列時發(fā)現(xiàn)原來曾經(jīng)做過的一道數(shù)列問題因紙張被破壞,導致一個條件看不清,具體如下:等比數(shù)列的前n項和為,已知_____,
(1)判斷,,的關系;
(2)若,設,記的前n項和為,證明:.
甲同學記得缺少的條件是首項a1的值,乙同學記得缺少的條件是公比q的值,并且他倆都記得第(1)問的答案是,,成等差數(shù)列.如果甲、乙兩同學記得的答案是正確的,請你通過推理把條件補充完整并解答此題.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系.xOy中,曲線C1的參數(shù)方程為( 為參數(shù)),以原點O為極點,x軸的正半軸為極軸建立極坐標系,曲線C2的極坐標方程為ρ=4sinθ.
(1)求曲線C1的普通方程和C2的直角坐標方程;
(2)已知曲線C2的極坐標方程為,點A是曲線C3與C1的交點,點B是曲線C3與C2的交點,且A,B均異于原點O,且|AB|=4,求α的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】共享單車是指由企業(yè)在校園、公交站點、商業(yè)區(qū)、公共服務區(qū)等場所提供的自行車單車共享服務,由于其依托“互聯(lián)網(wǎng)+”,符合“低碳出行”的理念,已越來越多地引起了人們的關注.某部門為了對該城市共享單車加強監(jiān)管,隨機選取了50人就該城市共享單車的推行情況進行問卷調査,并將問卷中的這50人根據(jù)其滿意度評分值(百分制)按照分成5組,請根據(jù)下面尚未完成并有局部污損的頻率分布表和頻率分布直方圖(如圖所示)解決下列問題:
頻率分布表
組別 | 分組 | 頻數(shù) | 頻率 |
第1組 | 8 | 0.16 | |
第2組 | ▆ | ||
第3組 | 20 | 0.40 | |
第4組 | ▆ | 0.08 | |
第5組 | 2 | ||
合計 | ▆ | ▆ |
(1)求的值;
(2)若在滿意度評分值為的人中隨機抽取2人進行座談,求所抽取的2人中至少一人來自第5組的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面四邊形(圖①)中,與均為直角三角形且有公共斜邊,設,∠,∠,將沿折起,構成如圖②所示的三棱錐,且使=.
(1)求證:平面⊥平面;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的左、右焦點分別為,,四個頂點恰好構成了一個邊長為且面積為的菱形.
(1)求橢圓的標準方程;
(2)已知直線,過右焦點F2,且它們的斜率乘積為,設,分別與橢圓交于點,和,,的中點為,的中點為,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知(,是自然對數(shù)的底數(shù)).
(1)求函數(shù)的單調區(qū)間;
(2)曲線在、處的切線平行,線段的中點為,求證:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,是由兩個全等的菱形和組成的空間圖形,,∠BAF=∠ECD=60°.
(1)求證:;
(2)如果二面角B-EF-D的平面角為60°,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù),且恒成立.
(1)求實數(shù)的集合;
(2)當時,判斷圖象與圖象的交點個數(shù),并證明.
(參考數(shù)據(jù):)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com