17.將函數(shù)y=sinx+cosx圖象上各點的橫坐標(biāo)縮短到原來的$\frac{1}{2}$倍,得到y(tǒng)=f(x)的圖象,則y=f(x)的最小正周期為( 。
A.$\frac{π}{2}$B.πC.D.

分析 求出y=f(x)的解析式,即可求出y=f(x)的最小正周期.

解答 解:y=sinx+cosx=$\sqrt{2}$sin(x+$\frac{π}{4}$),橫坐標(biāo)縮短到原來的$\frac{1}{2}$倍,得到y(tǒng)=f(x)=$\sqrt{2}$sin(2x+$\frac{π}{4}$),
T=$\frac{2π}{2}$=π,
故選B.

點評 本題考查y=f(x)的最小正周期,考查圖象變換,確定函數(shù)的解析式是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.下列說法正確的是( 。
A.若命題p:?x0∈R,x02-x0+1<0,則¬p:?x∉R,x2-x+1≥0
B.已知相關(guān)變量(x,y)滿足回歸方程$\stackrel{∧}{y}$=2-4x,若變量x增加一個單位,則y平均增加4個單位
C.命題“若圓C:(x-m+1)2+(y-m)2=1與兩坐標(biāo)軸都有公共點,則實數(shù)m∈[0,1]為真命題
D.已知隨機變量X~N(2,σ2),若P(X<a)=0.32,則P(X>4-a)=0.68

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知拋物線E:y2=8x,圓M:(x-2)2+y2=4,點N為拋物線E上的動點,O為坐標(biāo)原點,線段ON的中點P的軌跡為曲線C.
(1)求曲線C的方程;
(2)點Q(x0,y0)(x0≥5)是曲線C上的點,過點Q作圓M的兩條切線,分別與x軸交于A,B兩點,求△QAB面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在四棱錐P-ABCD中,底面ABCD為矩形,平面PAB⊥平面ABCD,AB=AP=3,AD=PB=2,E為線段AB上一點,且AE:EB=7:2,點F、G分別為線段PA、PD的中點.
(1)求證:PE⊥平面ABCD;
(2)若平面EFG將四棱錐P-ABCD分成左右兩部分,求這兩部分的體積之比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.在棱長為1的正方體ABCD-A1B1C1D1中,E、F分別為棱AA1、BB1的中點,G為棱A1B1上的一點,且A1G=λ(0≤λ≤1),則點G到平面D1EF的距離為$\frac{{\sqrt{5}}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若f(x)=x2+ax+b(a,b∈R),x∈[-1,1],且|f(x)|的最大值為$\frac{1}{2}$,則4a+3b=-$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.方程$\sqrt{{x^2}+6x+10}+\sqrt{{x^2}-6x+10}=8$的解為$±\frac{{4\sqrt{42}}}{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}-4,0≤x≤2}\\{2x,x>2}\end{array}\right.$
(1)求f(2),f[f(2)]的值;
(2)f(x0)=8,求x0的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.函數(shù)f(x)的圖象在點(2,f(2))處的切線方程為2x-y-3=0,則f(2)+f'(2)=3.

查看答案和解析>>

同步練習(xí)冊答案