分析 等比數(shù)列{an}的公比為2,且a3-a1=2$\sqrt{3}$,可得${a}_{1}({2}^{2}-1)$=2$\sqrt{3}$,解得a1.再利用等比數(shù)列的通項(xiàng)公式與求和公式即可得出.
解答 解:∵等比數(shù)列{an}的公比為2,且a3-a1=2$\sqrt{3}$,∴${a}_{1}({2}^{2}-1)$=2$\sqrt{3}$,解得a1=$\frac{2\sqrt{3}}{3}$.
∴an=$\frac{2\sqrt{3}}{3}×{2}^{n-1}$=$\frac{\sqrt{3}}{3}×{2}^{n}$.∴$\frac{1}{{a}_{n}^{2}}$=$\frac{3}{{4}^{n}}$.
則$\frac{1}{{{a}_{1}}^{2}}$+$\frac{1}{{{a}_{2}}^{2}}$+…+$\frac{1}{{{a}_{n}}^{2}}$=3×$(\frac{1}{4}+\frac{1}{{4}^{2}}+…+\frac{1}{{4}^{n}})$=$3×\frac{\frac{1}{4}(1-\frac{1}{{4}^{n}})}{1-\frac{1}{4}}$=1-$\frac{1}{{4}^{n}}$.
故答案為:1-$\frac{1}{{4}^{n}}$.
點(diǎn)評(píng) 本題考查了等比數(shù)列的通項(xiàng)公式與求和公式,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2:3 | B. | 1:3 | C. | 1:4 | D. | 1:$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{2}$+$\frac{1}{2}$i | B. | $\frac{1}{2}$-$\frac{1}{2}$i | C. | -$\frac{1}{2}$+$\frac{1}{2}$i | D. | -$\frac{1}{2}$-$\frac{1}{2}$i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com