11.已知拋物線C:y2=8x,點(diǎn)P為拋物線上任意一點(diǎn),過點(diǎn)P向圓D:x2+y2-4x+3=0作切線,切點(diǎn)分別為A,B,則四邊形PADB面積的最小值為( 。
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.3

分析 設(shè)P(x,y),D為拋物線的焦點(diǎn),故而PD=x+2,利用勾股定理求出PA,得出四邊形面積關(guān)于x的函數(shù),利用二次函數(shù)的性質(zhì)及x的范圍得出面積的最小值.

解答 解:圓D的圓心為D(2,0),半徑為r=DA=1,
與拋物線的焦點(diǎn)重合.
拋物線的準(zhǔn)線方程為x=-2.
設(shè)P(x,y),
則由拋物線的定義可知PD=PM=x+2,
∵PA為圓D的切線,
∴PA⊥AD,
∴PA=$\sqrt{P{D}^{2}-A{D}^{2}}$=$\sqrt{{x}^{2}+2x+3}$.
∴S四邊形PADB=2S△PAD=2×$\frac{1}{2}$AD×PA
=$\sqrt{{x}^{2}+2x+3}$.
∵x≥0,∴當(dāng)x=0時(shí),S四邊形PADB取得最小值$\sqrt{3}$.
故選B.

點(diǎn)評 本題考查了拋物線的性質(zhì),圓的切線的性質(zhì),屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.在直角梯形ABCD中,AB∥CD,DA⊥AB,2CD=AB=AD,$3\overrightarrow{DE}=\overrightarrow{DC}$,F(xiàn)在AE上,若$\overrightarrow{BF}⊥\overrightarrow{AE}$,$\overrightarrow{BF}=x\overrightarrow{AB}+y\overrightarrow{AD}$,則x+y=-$\frac{9}{16}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知直線兩直線l1:xcosα+$\frac{1}{2}$y-1=0;l2:y=xsin(α+$\frac{π}{6}$),△ABC中,內(nèi)角A,B,C對邊分別為a,b,c,且當(dāng)α=B時(shí),兩直線恰好相互垂直;
(Ⅰ)求B值;  
(Ⅱ)若$\frac{c}{a}+\frac{a}{c}$=4,求$\frac{1}{tanA}+\frac{1}{tanC}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知函數(shù)f(x)=$\left\{{\begin{array}{l}{{x^2}-1,x≥0}\\{-2x,x<0}\end{array}}$,則關(guān)于x的方程f[f(x)]+k=0給出下列四個(gè)命題:
①存在實(shí)數(shù)k,使得方程恰有1個(gè)實(shí)根;  
②存在實(shí)數(shù)k,使得方程恰有2個(gè)不相等的實(shí)根;
③存在實(shí)數(shù)k,使得方程恰有3個(gè)不相等的實(shí)根;
④存在實(shí)數(shù)k,使得方程恰有4個(gè)不相等的實(shí)根.
其中正確命題的序號是①②③(把所有滿足要求的命題序號都填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.函數(shù)f(x)在定義域R內(nèi)可導(dǎo),若f(x)=f(2-x),且當(dāng)x∈(-∞,1)時(shí),(x-1)f'(x)<0,設(shè)$a=f(-1),b=f(\frac{3}{2}),c=f(2)$則(  )
A.a<b<cB.b<c<aC.a<c<bD.c<a<b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.隨著手機(jī)的發(fā)展,“微信”越來越成為人們交流的一種方式.某機(jī)構(gòu)對“使用微信交流”的態(tài)度進(jìn)行調(diào)查,隨機(jī)抽取了50人,他們年齡的頻數(shù)分布及對“使用微信交流”贊成人數(shù)如表.
年齡(單位:歲)[15,25)[25,35)[35,45)[45,55)[55,65)[65,75)
頻數(shù)510151055
贊成人數(shù)51012721
(1)若以“年齡45歲為分界點(diǎn)”,由以上統(tǒng)計(jì)數(shù)據(jù)完成下面2×2列聯(lián)表,并判斷有多大的把握認(rèn)為“使用微信交流”的態(tài)度與人的年齡有關(guān)?
年齡低于45歲的人數(shù)年齡不低于45歲的人數(shù)合計(jì)
不贊成31013
贊成271037
合計(jì)302050
(2)若從年齡在[55,65)的被調(diào)查人中隨機(jī)選取2人進(jìn)行追蹤調(diào)查,求2人中至少有1人贊成“使用微信交流”的概率.
下面臨界值表供參考:
P(X2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.證明:若函數(shù)f(x)在區(qū)間[a,b]上是增函數(shù),那么方程f(x)=0在區(qū)間[a,b]上至多只有一個(gè)實(shí)數(shù)根.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知數(shù)列{an}為等比數(shù)列,若a2•a3=2a1,且a4與2a7的等差中項(xiàng)為$\frac{5}{4}$,則a1=( 。
A.8B.16C.32D.64

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.某幾何體的三視圖如圖所示,其正視圖,側(cè)視圖,俯視圖均為全等的正方形,則該幾何體的體積為(  )
A.$\frac{4}{3}$B.$\frac{8}{3}$C.$\sqrt{6}$D.2$\sqrt{6}$

查看答案和解析>>

同步練習(xí)冊答案