9.已知{an}是遞增的等差數(shù)列a3=$\frac{5}{2}$,且a2a4=6.
(1)求{an}的首項a1和公差d;
(2)求{an}的通項和前n項和Sn

分析 (1)由題意得公差d>0,運用等差數(shù)列中項的性質(zhì),解方程可得a2=2,a4=3,運用等差數(shù)列的通項公式可得公差d和首項;
(2)運用等差數(shù)列的通項公式和求和公式,化簡計算即可得到所求.

解答 解:(1)由題意得公差d>0,
a3=$\frac{5}{2}$,且a2a4=6,
可得a2+a4=2a3=5,
解得a2=2,a4=3,
可得2d=a4-a2=1,解得d=$\frac{1}{2}$,
則a1=a2-d=$\frac{3}{2}$;
(2){an}的通項an=a1+(n-1)d=$\frac{3}{2}$+$\frac{1}{2}$(n-1)=$\frac{1}{2}$(n+2);
前n項和Sn=na1+$\frac{1}{2}$n(n-1)d=$\frac{3}{2}$n+$\frac{1}{4}$n(n-1)=$\frac{1}{4}$n2+$\frac{5}{4}$n.

點評 本題考查等差數(shù)列的通項公式和求和公式的運用,以及等差數(shù)列的性質(zhì),運用方程思想和公式法是解題的關鍵,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

19.給出下列命題:
①點P(-1,4)到直線3x+4y=2的距離為3.
②過點M(-3,5)且在兩坐標軸上的截距互為相反數(shù)的直線方程為x-y+8=0.
③命題“?x∈R,使得x2-2x+1<0”的否定是真命題;
④“x≤1,且y≤1”是“x+y≤2”的充要條件.
其中不正確命題的序號是①②④.(把你認為不正確命題的序號都填上)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.設$f(x)=sinxcosx-{cos^2}({x+\frac{π}{4}}),x∈R$.
(I)求f(x)的單調(diào)遞增區(qū)間;
(II)在銳角△ABC中,A、B、C的對邊分別為a,b,c,若$f({\frac{A}{2}})=0,a=1$,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.在△ABC中,已知|BC|=4,且$\frac{{|{AB}|}}{{|{AC}|}}=λ$,求點A的軌跡方程,并說明軌跡是什么圖形.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.一商場在某日促銷活動中,對9時至14時的銷售額進行統(tǒng)計,其頻率分布直方圖如圖所示,已知9時至10時的銷售額為2.5萬元,則11時至12時的銷售為( 。
A.100萬元B.10萬元C.7.5萬元D.6.25萬元

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.已知函數(shù)f(x)=$\left\{\begin{array}{l}{|x-1|(x≤1)}\\{{3}^{x}(x>1)}\end{array}\right.$,則f(f(-2))=27,若f(a)=2,則a=-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知函數(shù)f(x)和g(x)的圖象關于原點對稱,且f(x)=x2+x.
(Ⅰ)求函數(shù)g(x)的解析式;
(Ⅱ)若h(x)=g(x)-λf(x)+1在[-1,1]上是增函數(shù),求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.已知等差數(shù)列{an}中,a5+a7=$\int_0^2{|{1-{x^2}}|}$dx,則a4+a6+a8=3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知A、B兩地的距離是120km,按交通法規(guī)規(guī)定,A、B兩地之間的公路車速應限制在50~100km/h.假設汽油的價格是6元/升,汽車的油耗率為$(3+\frac{x^2}{360})L/h$,司機每小時的工資是42元,設車速x(單位:km/h),如果不考慮其他費用,行車的總費用為y(單位:元).
(1)將y表示為x的函數(shù);
(2)最經(jīng)濟的車速是多少?并求出這次行車的最小費用?

查看答案和解析>>

同步練習冊答案