【題目】作出下列函數(shù)的大致圖像,并寫(xiě)出函數(shù)的單調(diào)區(qū)間和值域.

1;(2;(3;(4

【答案】1)增區(qū)間:,值域:R;

2)增區(qū)間:,減區(qū)間:,值域:;

3)減區(qū)間:,增區(qū)間:,值域:;

4)減區(qū)間:,增區(qū)間:,值域:,大致圖像見(jiàn)解析

【解析】

1)由,由對(duì)稱性即可作出圖像,結(jié)合圖像即可求出單調(diào)性、值域.

2)將函數(shù)化為,利用冪函數(shù)的圖像,由平移即可作出圖像,結(jié)合圖像即可求出單調(diào)性、值域.

3)由,通過(guò)圖像的翻折變化即可作出圖像,結(jié)合圖像即可求出單調(diào)性、值域.

4)由,去絕對(duì)值,描點(diǎn)即可作出大致圖像,結(jié)合圖像即可求出單調(diào)性、值域.

1)函數(shù)的圖象如圖所示:

函數(shù)在上為增函數(shù),值域:.

2,圖象如圖所示:

函數(shù)在為增函數(shù),在為減函數(shù),

值域?yàn)椋?/span>.

3,圖象如圖所示:

函數(shù)在為減函數(shù),在為增函數(shù).

值域?yàn)椋?/span>;

4

函數(shù)在為減函數(shù),在為增函數(shù),

值域?yàn)椋?/span>.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為響應(yīng)黨中央“扶貧攻堅(jiān)”的號(hào)召,某單位指導(dǎo)一貧困村通過(guò)種植紫甘薯來(lái)提高經(jīng)濟(jì)收入.紫甘薯對(duì)環(huán)境溫度要求較高,根據(jù)以往的經(jīng)驗(yàn),隨著溫度的升高,其死亡株數(shù)成增長(zhǎng)的趨勢(shì).下表給出了2017年種植的一批試驗(yàn)紫甘薯在溫度升高時(shí)6組死亡的株數(shù):

經(jīng)計(jì)算: , , , , ,其中分別為試驗(yàn)數(shù)據(jù)中的溫度和死亡株數(shù), .

(1)若用線性回歸模型,求關(guān)于的回歸方程(結(jié)果精確到);

(2)若用非線性回歸模型求得關(guān)于的回歸方程為,且相關(guān)指數(shù)為.

(i)試與(1)中的回歸模型相比,用說(shuō)明哪種模型的擬合效果更好;

(ii)用擬合效果好的模型預(yù)測(cè)溫度為時(shí)該批紫甘薯死亡株數(shù)(結(jié)果取整數(shù)).

附:對(duì)于一組數(shù)據(jù), ,……, ,其回歸直線的斜率和截距的最小二乘估計(jì)分別為: ;相關(guān)指數(shù)為: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿分12分)某公司為確定下一年度投入某種產(chǎn)品的宣傳費(fèi),需了解年宣傳費(fèi)x(單位:千元)對(duì)年銷售量y(單位:t)和年利潤(rùn)z(單位:千元)的影響,對(duì)近8年的宣傳費(fèi)和年銷售量數(shù)據(jù)作了初步處理,得到下面的散點(diǎn)圖及一些統(tǒng)計(jì)量的值.


46.6

563

6.8

289.8

1.6

1469

108.8

表中=,=

(Ⅰ)根據(jù)散點(diǎn)圖判斷,,哪一個(gè)適宜作為年銷售量y關(guān)于年宣傳費(fèi)x的回歸方程類型(給出判斷即可,不必說(shuō)明理由);

(Ⅱ)根據(jù)()的判斷結(jié)果及表中數(shù)據(jù),建立y關(guān)于x的回歸方程;

(III)已知這種產(chǎn)品的年利zx,y的關(guān)系為,根據(jù)()的結(jié)果回答下列問(wèn)題:

(Ⅰ)當(dāng)年宣傳費(fèi)時(shí),年銷售量及年利潤(rùn)的預(yù)報(bào)值時(shí)多少?

(Ⅱ)當(dāng)年宣傳費(fèi)為何值時(shí),年利潤(rùn)的預(yù)報(bào)值最大?

附:對(duì)于一組數(shù)據(jù),,……,,其回歸線的斜率和截距的最小二乘估計(jì)分別為:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩人玩錘子、剪刀、布的猜拳游戲,假設(shè)兩人都隨機(jī)出拳,求:

1)平局的概率;

2)甲贏的概率;

3)甲不輸?shù)母怕?/span>.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】有兩個(gè)不透明的箱子,每個(gè)箱子都裝有4個(gè)完全相同的小球,球上分別標(biāo)有數(shù)字1,2,3,4.

(1)甲從其中一個(gè)箱子中摸出一個(gè)球,乙從另一個(gè)箱子摸出一個(gè)球,誰(shuí)摸出的球上標(biāo)的數(shù)字大誰(shuí)就獲勝(若數(shù)字相同則為平局),求甲獲勝的概率;

(2)摸球方法與(1)同,若規(guī)定:兩人摸到的球上所標(biāo)數(shù)字相同甲獲勝,所標(biāo)數(shù)字不相同則乙獲勝,這樣規(guī)定公平嗎?請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某省級(jí)示范高中高三年級(jí)對(duì)考試的評(píng)價(jià)指標(biāo)中,有難度系數(shù)”“區(qū)分度綜合三個(gè)指標(biāo),其中,難度系數(shù),區(qū)分度,綜合指標(biāo).以下是高三年級(jí) 6 次考試的統(tǒng)計(jì)數(shù)據(jù):

i

1

2

3

4

5

6

難度系數(shù) xi

0.66

0.72

0.73

0.77

0.78

0.84

區(qū)分度 yi

0.19

0.24

0.23

0.23

0.21

0.16

(I) 計(jì)算相關(guān)系數(shù),若,則認(rèn)為的相關(guān)性強(qiáng);通過(guò)計(jì)算相關(guān)系數(shù) ,能否認(rèn)為的相關(guān)性很強(qiáng)(結(jié)果保留兩位小數(shù))?

(II) 根據(jù)經(jīng)驗(yàn),當(dāng)時(shí),區(qū)分度與難度系數(shù)的相關(guān)性較強(qiáng),從以上數(shù)據(jù)中剔除(0.7,0.8)以外的 值,即

(i) 寫(xiě)出剩下 4 組數(shù)據(jù)的線性回歸方程(保留兩位小數(shù));

(ii) 假設(shè)當(dāng)時(shí), 的關(guān)系依從(i)中的回歸方程,當(dāng) 為何值時(shí),綜合指標(biāo)的值最大?

參考數(shù)據(jù):

參考公式:

相關(guān)系數(shù)

回歸方程中斜率和截距的最小二乘估計(jì)公式為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知A(2,2,2),B(2,0,0),C(0,2,-2).

(1)寫(xiě)出直線BC的一個(gè)方向向量;

(2)設(shè)平面α經(jīng)過(guò)點(diǎn)A,且BCα的法向量,M(x,y,z)是平面α內(nèi)的任意一點(diǎn),試寫(xiě)出x,y,z滿足的關(guān)系式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐PABCD中,底面ABCD是矩形,PA⊥平面ABCD,APAB=2,BC=2,EF分別是AD,PC的中點(diǎn).

(1)證明:PC⊥平面BEF;

(2)求平面BEF與平面BAP夾角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校擬派一名跳高運(yùn)動(dòng)員參加一項(xiàng)校際比賽,對(duì)甲、乙兩名跳高運(yùn)動(dòng)員進(jìn)行了8次選拔比賽,他們的成績(jī)(單位:m)如下:

甲:1.70,1.651.68,1.69,1.72,1.731.681.67;

乙:1.60,1.73,1.72,1.611.62,1.71,1.701.75.

經(jīng)預(yù)測(cè),跳高1.65m就很可能獲得冠軍.該校為了獲取冠軍,可能選哪位選手參賽?若預(yù)測(cè)跳高1.70m方可獲得冠軍呢?

查看答案和解析>>

同步練習(xí)冊(cè)答案