13.已知x,y滿足不等式組$\left\{\begin{array}{l}{x-3y+2≥0}\\{x+y-6≤0}\\{y≥1}{\;}\end{array}\right.$,若目標(biāo)函數(shù)z=x+ay取得最小值的最優(yōu)解有無數(shù)個,則a=-3.

分析 由題設(shè)條件,目標(biāo)函數(shù)z=x+ay,取得最小值的最優(yōu)解有無數(shù)個知取得最優(yōu)解必在邊界上而不是在頂點上,故目標(biāo)函數(shù)的斜率為正,最小值應(yīng)在左上方邊界AC上取到,即x+ay=0應(yīng)與直線AC平行,進而計算可得a值.

解答 解:作出不等式組對應(yīng)的平面區(qū)域
由題意,最優(yōu)解應(yīng)在線段AC上取到,故x+ay=0應(yīng)與直線AC平行,
∵kAC=$\frac{2-1}{4-1}$=$\frac{1}{3}$,
∴-$\frac{1}{a}$=$\frac{1}{3}$,
∴a=-3,
故答案為:-3

點評 本題考查線性規(guī)劃最優(yōu)解的判定,作出不等式組對應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的幾何意義,結(jié)合數(shù)形結(jié)合進行求解是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.在△ABC中,角A,B,C所對的邊分別為a,b,c,a=$\sqrt{3}$,b=$\sqrt{2}$,1+2cos(B+C)=0,則BC邊上的高為$\frac{\sqrt{3}+1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,點A,B,C是橢圓$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{4}$=1的三個頂點,D是OA的中點,P、Q是直線x=4上的兩個動點.
(1)當(dāng)點P的縱坐標(biāo)為1時,求證:直線CD與直線BP的交點在橢圓上;
(2)設(shè)F1,F(xiàn)2分別是橢圓的左、右焦點,PF1⊥QF2,證明以線段PQ為直徑的圓恒過定點,并求出該定點坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)全集U=R,集合A={x|0<x≤3},B={x|x2<4},則集合∁U(A∪B)等于(  )
A.(-∞,-2]B.(-∞,0]∪[2,+∞)C.(3,+∞)D.(-∞,-2]∪(3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知集合A={x|x2-1≤0,x∈Z},B={-2,-1,0,1,2},則A∩B子集的個數(shù)為( 。
A.2B.4C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.點M在矩形ABCD內(nèi)運動,其中AB=2,BC=1,則動點M到頂點A的距離|AM|≤1的概率為( 。
A.$\frac{1}{4}$B.$\frac{π}{8}$C.$\frac{π}{4}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.一個棱錐的三視圖如圖所示,則該棱錐的所有棱長之和等于4+4$\sqrt{3}$,棱錐的體積等于

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知命題p:?x∈R,x2>3,則¬p為( 。
A.?x∈R,x2<3B.?x∈R,x2≤3C.?x∈R,x2<3D.?x∈R,x2≤3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.在平面直角坐標(biāo)系中,函數(shù)f(x)=(b-2)x2+2bx-1的圖象與兩坐標(biāo)軸有三個交點,經(jīng)過這三個交點的圓記為C.
(1)求實數(shù)b的取值范圍;
(2)求圓C的方程;
(3)圓C過定點(即坐標(biāo)與b無關(guān))嗎?試證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案