7.已知函數(shù)f(x)=sinxcosx-$\sqrt{3}$cos2x+$\frac{\sqrt{3}}{2}$.
(1)求函數(shù)f(x)的周期;
(2)求函數(shù)f(x)在[-$\frac{π}{6}$,$\frac{2π}{3}$]的取值范圍.

分析 (1)化簡函數(shù)f(x)為Asin(ωx+φ)的形式,求出最小正周期;
(2)由x∈[-$\frac{π}{6}$,$\frac{2π}{3}$]求出相位的取值范圍,再計(jì)算f(x)的取值范圍即可.

解答 解:(1)函數(shù)f(x)=sinxcosx-$\sqrt{3}$cos2x+$\frac{\sqrt{3}}{2}$
=$\frac{1}{2}$sin2x-$\sqrt{3}×$$\frac{cos2x+1}{2}$+$\frac{\sqrt{3}}{2}$
=$\frac{1}{2}$sin2x-$\frac{\sqrt{3}}{2}$cos2x
=sin(2x-$\frac{π}{3}$),…(4分)
由T=$\frac{2π}{2}$得,最小正周期T=π;…(6分)
(2)∵x∈[-$\frac{π}{6}$,$\frac{2π}{3}$],∴-$\frac{2π}{3}$≤2x-$\frac{π}{3}$≤π,…(7分)
∴-1≤sin(2x-$\frac{π}{3}$)≤1,…(9分)
函數(shù)f(x)在[-$\frac{π}{6}$,$\frac{2π}{3}$]的取值范圍:[-1,1].

點(diǎn)評(píng) 本題考查了三角函數(shù)的化簡與形如f(x)=Asin(ωx+φ)+b的圖象與性質(zhì)的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知集合M={x|y=ln(1-x)},集合N={y|y=3x,x∈R},則M∩N=( 。
A.{x|x<1}B.{x|x>1}C.{x|0<x<1}D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)集合A={x|(x-1)(x-2)2=0},則集合A中元素的個(gè)數(shù)為( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知圓C的圓心在坐標(biāo)原點(diǎn),且過點(diǎn)M(1,$\sqrt{3}$).
(1)求圓C的方程;
(2)若直線l經(jīng)過點(diǎn)M(1,$\sqrt{3}$)且與圓C相切,求直線l 的方程.
(3)已知點(diǎn)P是圓C上的動(dòng)點(diǎn),試求點(diǎn)P到直線x+y-4=0的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.函數(shù)f(x)=x3-3x在[-3,$\frac{3}{2}$]上的最大值和最小值分別是( 。
A.2,-2B.2,-18C.18,-2D.18,-18

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)a=log54,b=log0.55,c=log45,則( 。
A.a<c<bB.b<c<aC.a<b<cD.b<a<c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,已知三棱錐P-ABC中,PA⊥平面ABC,AB⊥BC,且AB=BC=1,PA=$\sqrt{2}$,O為線段PC的中點(diǎn),
(1)證明:BC⊥平面PAB;
(2)求直線PC與平面PAB所成的角;
(3)求三棱錐B-AOC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.將下列函數(shù)分解成基本初等函數(shù)或基本初等函數(shù)經(jīng)過四則運(yùn)算而復(fù)合的形式:
(1)y=arccos$\frac{3x+1}{2}$;
(2)y=e${\;}^{(\frac{1-{x}^{2}}{1+{x}^{2}})^{\frac{1}{2}}}$;
(3)y=sin2$\sqrt{x}$;
(4)y=e${\;}^{arctan{x}^{2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)a>0,解關(guān)于x的不等式:2a(1-a)x2-2(1-a)x+1>0.

查看答案和解析>>

同步練習(xí)冊答案