19.已知f(x)=sinx+2cosx,若函數(shù)g(x)=f(x)-m在x∈(0,π)上有兩個(gè)不同零點(diǎn)α,β,則cos(α+β)=( 。
A.-1B.$\frac{{m}^{2}}{5}$-1C.$\frac{4}{5}$D.$\frac{3}{5}$

分析 f(x)=sinx+2cosx=$\sqrt{5}$sin(x+φ),其中cosφ=$\frac{\sqrt{5}}{5}$,sinφ=$\frac{2\sqrt{5}}{5}$.由x∈(0,π),可得φ<x+φ<π+φ.由于函數(shù)g(x)=f(x)-m在x∈(0,π)上有兩個(gè)不同零點(diǎn)α、β,可得y=m與y=f(x)的圖象有兩個(gè)交點(diǎn),可得α與β關(guān)于直線x=$\frac{π}{2}$對(duì)稱,即可得出.

解答 解:f(x)=sinx+2cosx=$\sqrt{5}$($\frac{1}{\sqrt{5}}$sinx+$\frac{2}{\sqrt{5}}$cosx)=$\sqrt{5}$sin(x+φ),其中cosφ=$\frac{\sqrt{5}}{5}$,sinφ=$\frac{2\sqrt{5}}{5}$.
∵x∈(0,π),∴φ<x+φ<π+φ.
∵函數(shù)g(x)=f(x)-m在x∈(0,π)上有兩個(gè)不同零點(diǎn)α、β,
∴y=m與y=f(x)的圖象有兩個(gè)交點(diǎn),
cos2φ=2cos2φ-1=2×($\frac{\sqrt{5}}{5}$)2-1=-$\frac{3}{5}$,
∴sinφ<m<$\sqrt{5}$.
且α與β關(guān)于直線x=$\frac{π}{2}$對(duì)稱,
∴α+β+2φ=π,
則cos(α+β)=-cos2φ=$\frac{3}{5}$.
故選:D.

點(diǎn)評(píng) 本題考查了和差公式、三角函數(shù)的圖象與性質(zhì)、函數(shù)的零點(diǎn)轉(zhuǎn)化為圖象的交點(diǎn),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.在Rt△ABC中,AB=AC,以C為一個(gè)焦點(diǎn)作一個(gè)橢圓,使這個(gè)橢圓的另一個(gè)焦點(diǎn)在AB內(nèi),且橢圓過A.B點(diǎn),則這個(gè)橢圓的離心率等于$\sqrt{6}$-$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.下列命題,是真命題的有④
①兩個(gè)復(fù)數(shù)不能比較大小;
②若x,y∈C,x+yi=1+i的充要條件是x=y=1;
③若實(shí)數(shù)a與ai對(duì)應(yīng),則實(shí)數(shù)集與純虛數(shù)集一一對(duì)應(yīng);
④實(shí)數(shù)集相對(duì)復(fù)數(shù)集的補(bǔ)集是虛數(shù)集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.?dāng)?shù)列{an}滿足${a_1}=1,{a_{n+1}}=\frac{n+1}{n}{a_n}+2n+2(n∈{N^*})$,令${b_n}=\frac{a_n}{n}$,
(1)求證{bn}是等差數(shù)列并求{an}的通項(xiàng)公式;
(2)求數(shù)列{b3n-1}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知△ABC的內(nèi)角A,B,C的對(duì)邊長(zhǎng)分別是a,b,c,若a,b,c成等比數(shù)列,則角B的最大值為( 。
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{π}{2}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=-x3+x2+a,g(x)=m lnx.
(1)求f(x)的單調(diào)區(qū)間;
(2)若f(x)在x∈[-$\frac{1}{2}$,1]上的最大值為$\frac{3}{8}$,求實(shí)數(shù)a的值;
(3)若對(duì)任意x∈[1,e],g(x)≥$\frac{f'(x)}{3}$+(m+$\frac{4}{3}$)x恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.用秦久韶算法計(jì)算多項(xiàng)式f(x)=2x5+5x4+8x3+7x2-6x+11,在求x=3時(shí)對(duì)應(yīng)的值時(shí),v3的值為130.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.某風(fēng)景區(qū)出售旅游年卡,每張144元,使用規(guī)定:不記名,每卡每次只限1人,每天只限一次,某公司有48名職工,公司打算組織員工分組分批集體旅游,除需購買若干張年卡外,每次還需包一輛汽車(最多乘48人)每次包車費(fèi)54元,若使每位員工游玩8次.
(1)如果買16張卡,那么游玩8次,每位員工需交多少錢?
(2)買多少張卡最合算(即員工交錢最少),每位員工需交多少錢?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=$\frac{{x}^{2}}{2}$-klnx,k>0,求f(x)的單調(diào)區(qū)間和極值.

查看答案和解析>>

同步練習(xí)冊(cè)答案