【題目】設(shè)函數(shù).

1)若a0時,求函數(shù)的單調(diào)遞增區(qū)間;

2)若函數(shù)x1時取極大值,求實數(shù)a的取值范圍;

3)設(shè)函數(shù)的零點個數(shù)為m,試求m的最大值.

【答案】1)單調(diào)增區(qū)間為(1,)232

【解析】

1)求導(dǎo)得到函數(shù)的單調(diào)增區(qū)間.

2)求導(dǎo),討論,,,幾種情況,分別計算函數(shù)極值得到答案.

3)考慮,兩種情況,求導(dǎo)得到單調(diào)區(qū)間,計算極值判斷零點個數(shù),得到答案.

1)當(dāng)a0時,,所以,由x1,

當(dāng)x(0,1)時,0;當(dāng)x(1,)時,0,

所以函數(shù)的單調(diào)增區(qū)間為(1,).

2)由題意得

(x0),則,

當(dāng)0時,0恒成立,

(0,1)上遞減,在(1,+)上遞增,所以x1是函數(shù)的極小值點,不滿足;

當(dāng)時,此時0恒成立,

(0,1)上遞減,在(1,+)上遞增,所以x1是函數(shù)的極小值點,不滿足;

當(dāng)時,

(0,1)上遞減,在(1,+)上遞增,所以x1是函數(shù)的極小值點,不滿足;

當(dāng)時,解得(舍),

當(dāng)時,設(shè)的兩個零點為,,所以1,不妨設(shè)0,

,所以01,故

當(dāng)x(0,)時,0;當(dāng)x(,1)時,0;當(dāng)x(1,)時,0;當(dāng)x(,)時,0;

(0,)上遞減,在(,1)上遞增,在(1,)上遞減,在(,)上遞增;

所以x1是函數(shù)極大值點,滿足.

綜上所述:.

3)①由(2)知當(dāng)時,函數(shù)(0,1)上單調(diào)遞減,在(1,)上單調(diào)遞增,故函數(shù)至多有兩個零點,欲使有兩個零點,需,得,

;

,

故滿足函數(shù)有2個零點.

②當(dāng)時,由(2)知(0,)上遞減,在(1)上遞增,在(1)上遞減,在(,)上遞增;

01,所以,

此時函數(shù)也至多有兩個零點

綜上①②所述,函數(shù)的零點個數(shù)m的最大值為2.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線l的參數(shù)方程為t為參數(shù)).以坐標(biāo)原點O為極點,x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為,且直線l與曲線C交于M、N兩點.

1)求直線l的普通方程以及曲線C的直角坐標(biāo)方程;

2)若曲線C外一點恰好落在直線l上,且,求m,n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列滿足奇數(shù)項成等差,公差為,偶數(shù)項成等比,公比為,且數(shù)列的前項和為,,.

,.

①求數(shù)列的通項公式;

②若,求正整數(shù)的值;

,對任意給定的,是否存在實數(shù),使得對任意恒成立?若存在,求出的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市場研究人員為了了解產(chǎn)業(yè)園引進(jìn)的甲公司前期的經(jīng)營狀況,對該公司2019年連續(xù)六個月的利潤進(jìn)行了統(tǒng)計,并根據(jù)得到的數(shù)據(jù)繪制了相應(yīng)的折線圖,如圖所示:

1)由折線圖可以看出,可用線性回歸模型擬合月利潤(單位:百萬元)與月份代碼之間的關(guān)系,求關(guān)于的線性回歸方程,并預(yù)測該公司20204月份的利潤;

2)甲公司新研制了一款產(chǎn)品,需要采購一批新型材料,現(xiàn)有A,B兩種型號的新型材料可供選擇,按規(guī)定每種新型材料最多可使用4個月,但新材料的不穩(wěn)定性會導(dǎo)致材料的使用壽命不同,現(xiàn)對AB兩種型號的新型材料對應(yīng)的產(chǎn)品各100件進(jìn)行科學(xué)模擬測試,得到兩種新型材料使用壽命的頻數(shù)統(tǒng)計如下表:

經(jīng)甲公司測算平均每件新型材料每月可以帶來6萬元收人入,不考慮除采購成本之外的其他成本,A型號材料每件的采購成本為10萬元,B型號材料每件的采購成本為12萬元.假設(shè)每件新型材料的使用壽命都是整月數(shù),且以頻率作為每件新型材料使用壽命的概率,如果你是甲公司的負(fù)責(zé)人,以每件新型材料產(chǎn)生利潤的平均值為決策依據(jù),你會選擇采購哪款新型材料?

參考數(shù)據(jù):.

參考公式:回歸直線方程,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)(M00,0)的最小值是﹣2,最小正周期是2,且圖象經(jīng)過點N(1).

1)求的解析式;

2)在△ABC中,若,,求cosC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知平面直角坐標(biāo)系,直線過點,且傾斜角為,以為極點,軸的非負(fù)半軸為極軸建立極坐標(biāo)系,圓的極坐標(biāo)方程為.

(1)求直線的參數(shù)方程和圓的標(biāo)準(zhǔn)方程;

(2)設(shè)直線與圓交于、兩點,若,求直線的傾斜角的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于x的實系數(shù)方程有四個不同的根,若這四個根在復(fù)平面上對應(yīng)的點共圓,則m的取值范圍是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某醫(yī)院對治療支氣管肺炎的兩種方案,進(jìn)行比較研究,將志愿者分為兩組,分別采用方案和方案進(jìn)行治療,統(tǒng)計結(jié)果如下:

有效

無效

合計

使用方案

96

120

使用方案

72

合計

32

1)完成上述列聯(lián)表,并比較兩種治療方案有效的頻率;

2)能否在犯錯誤的概率不超過0.05的前提下認(rèn)為治療是否有效與方案選擇有關(guān)?

附:,其中.

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】己知橢圓的離心率為,點在橢圓C.

1)求橢圓C的標(biāo)準(zhǔn)方程;

2)過坐標(biāo)原點的直線交CPQ兩點,點P在第一象限,軸,垂足為E,連結(jié)QE并延長交C于點G.

①求證:是直角三角形;

②求面積的最大值.

查看答案和解析>>

同步練習(xí)冊答案