20.某同學(xué)在一次研究性學(xué)習(xí)中發(fā)現(xiàn),以下四個式子的值都等于同一個常數(shù):
(1)cos(-60°)+cos60°+cos180°;     
(2)cos(-27°)+cos107°+cos227°;
(3)cos30°+cos150°+cos270°;     
 (4)cos40°+cos160°+cos280°.
(Ⅰ)試從上述四個式子中選擇一個式子,進(jìn)行化簡求值;
(Ⅱ)根據(jù)(Ⅰ)的計算結(jié)果,請你寫出一個以題設(shè)的四個式子為特例的一般性命題,并給出證明.

分析 (Ⅰ)選擇(1)式計算,可得cos(-60°)+cos60°+cos180°=0;
(Ⅱ)一般性的命題為cos(α-120°)+cosα+cos(α+120°)=0,
利用兩角和與差的余弦值公式化簡,即可證明命題成立.

解答 解:(Ⅰ)選擇(1)式計算,可得
cos(-60°)+cos60°+cos180°=$\frac{1}{2}$+$\frac{1}{2}$-1=0;…(4分)
(Ⅱ)一般性的命題為cos(α-120°)+cosα+cos(α+120°)=0;…(6分)
證明:左邊=cos(α-120°)+cosα+cos(α+120°)
=cosαcos120°+sinαsin120°+cosα+cosαcos120°-sinαsin120°…(10分)
=-$\frac{1}{2}$cosα+cosα-$\frac{1}{2}$cosα
=0=右邊.…(12分)
所以命題成立.

點評 本題考查了簡單推理的應(yīng)用問題,也考查了兩角和與差的余弦公式的應(yīng)用問題,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知函數(shù)$f(x)=sin({ωx+\frac{π}{4}})({ω>0})在({\frac{π}{2},π})$單調(diào)遞減,則ω的取值范圍可以是( 。
A.$[{\frac{1}{2},\frac{5}{4}}]$B.$[{0,\frac{5}{4}}]$C.$({0,\frac{1}{2}}]$D.(0,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.交通管理部門為了解機(jī)動車駕駛員(簡稱駕駛員)對某新法規(guī)的知曉情況,對甲、乙、丙、丁四個社區(qū)做分層抽樣調(diào)查.假設(shè)四個社區(qū)駕駛員的總?cè)藬?shù)為N,其中甲社區(qū)有駕駛員96人.若在甲、乙、丙、丁四個社區(qū)抽取駕駛員的人數(shù)分別為8,23,27,43,則這四個社區(qū)駕駛員的總?cè)藬?shù)N為( 。
A.101B.808C.1212D.2012

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.給出一個命題P:若a,b,c,d∈R,a+b=1,c+d=1,且ac+bd>1,則a,b,c,d中至少有一個小于零.在用反證法證明P時,應(yīng)該假設(shè)( 。
A.a,b,c,d中至少有一個正數(shù)B.a,b,c,d全為正數(shù)
C.a,b,c,d全都大于或等于0D.a,b,c,d中至多有一個負(fù)數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知函數(shù)f(x)=ax2-(a+2)x+lnx在(0,1)內(nèi)存在極小值,則實數(shù)a的取值范圍是(  )
A.(-∞,2)B.(1,2)C.(1,+∞)D.(1,2)∪(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.下列表示旅客搭乘動車的流程中,正確的是( 。
A.買票→候車廳候車→上車→候車檢票口檢票
B.候車廳候車→買票→上車→候車檢票口檢票
C.買票→候車廳候車→候車檢票口檢票→上車
D.候車廳候車→上車→候車檢票口檢票→買票

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.用反證法證明:在△ABC中,若∠C是直角,則∠B是銳角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知△ABC中,角A,B,C所對的邊分別是a,b,c,$sinA=\sqrt{3}sinC$,$b=\sqrt{7}$.
(Ⅰ)若$B=\frac{π}{6}$,證明:sinB=sinC;
(Ⅱ)若B為鈍角,$cos2B=\frac{1}{2}$,求AC邊上的高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知變量x,y滿足約束條件$\left\{\begin{array}{l}{-2x+y≤4}\\{4x+3y≤12}\\{y≥1}\end{array}\right.$,則z=2x+y的最小值為( 。
A.$-\frac{1}{2}$B.1C.-2D.$\frac{11}{2}$

查看答案和解析>>

同步練習(xí)冊答案