8.給出一個命題P:若a,b,c,d∈R,a+b=1,c+d=1,且ac+bd>1,則a,b,c,d中至少有一個小于零.在用反證法證明P時,應(yīng)該假設(shè)( 。
A.a,b,c,d中至少有一個正數(shù)B.a,b,c,d全為正數(shù)
C.a,b,c,d全都大于或等于0D.a,b,c,d中至多有一個負(fù)數(shù)

分析 用反證法證明數(shù)學(xué)命題時,應(yīng)先假設(shè)結(jié)論的否定成立.

解答 解:“a,b,c,d中至少有一個負(fù)數(shù)”的否定為“a,b,c,d全都大于或等于0”,
由用反證法證明數(shù)學(xué)命題的方法可得,應(yīng)假設(shè)“a,b,c,d全都大于或等于0”,
故選:C.

點評 本題主要考查用反證法證明數(shù)學(xué)命題,把要證的結(jié)論進行否定,得到要證的結(jié)論的反面,是解題的突破口,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.2弧度圓心角所對的弦長為2sin1,則這個圓心角所夾扇形的面積為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.某校高二(1)班每周都會選出兩位“遲到之星”,期中考試之前一周“遲到之星”人選揭曉之前,小馬說:“兩個人選應(yīng)該是在小趙、小宋和小譚三人之中產(chǎn)生”,小趙說:“一定沒有我,肯定有小宋”,小宋說:“小馬、小譚二人中有且僅有一人是遲到之星”,小譚說:“小趙說的對”.已知這四人中有且只有兩人的說法是正確的,則“遲到之星”是(  )
A.小趙、小譚B.小馬、小宋C.小馬、小譚D.小趙、小宋

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知一只螞蟻在邊長為4的正三角形內(nèi)爬行,則此螞蟻到三角形三個頂點的距離均超過1的概率為(  )
A.$\frac{\sqrt{3}π}{12}$B.$\frac{\sqrt{3}π}{24}$C.1-$\frac{\sqrt{3}π}{12}$D.1-$\frac{\sqrt{3}π}{24}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.有10張卡片,其中8張標(biāo)有數(shù)字3,2張標(biāo)有數(shù)字5,從中任意抽出3張卡片,設(shè)3張卡片上的數(shù)字之和為X,求X的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.用數(shù)學(xué)歸納法證明n+(n+1)+(n+2)+…+(3n-2)=(2n-1)2,(n∈N*)時,若記f(n)=n+(n+1)+(n+2)+…+(3n-2),則f(k+1)-f(k)等于( 。
A.3k-1B.3k+1C.8kD.9k

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.某同學(xué)在一次研究性學(xué)習(xí)中發(fā)現(xiàn),以下四個式子的值都等于同一個常數(shù):
(1)cos(-60°)+cos60°+cos180°;     
(2)cos(-27°)+cos107°+cos227°;
(3)cos30°+cos150°+cos270°;     
 (4)cos40°+cos160°+cos280°.
(Ⅰ)試從上述四個式子中選擇一個式子,進行化簡求值;
(Ⅱ)根據(jù)(Ⅰ)的計算結(jié)果,請你寫出一個以題設(shè)的四個式子為特例的一般性命題,并給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知過原點的直線l1與直線l2:x+3y+1=0垂直,圓C的方程為x2+y2-2ax-2ay=1-2a2(a>0),若直線l1與圓C交于M,N兩點,則當(dāng)△CMN的面積最大時,圓心C的坐標(biāo)為( 。
A.$({\frac{{\sqrt{5}}}{2},\frac{{\sqrt{5}}}{2}})$B.$({\frac{{\sqrt{3}}}{2},\frac{{\sqrt{3}}}{2}})$C.$({\frac{1}{2},\frac{1}{2}})$D.(1,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.定義在R上的函數(shù)f(x),如果存在函數(shù)g(x)=ax+b,(a,b為常數(shù)),使得f(x)≥g(x)
對一切實數(shù)x都成立,則稱g(x)為函數(shù)f(x)的一個承托函數(shù).給出如下命題:
①函數(shù)g(x)=-2是函數(shù)$f(x)=\left\{\begin{array}{l}lnx,x>0\\ 1,x≤0\end{array}\right.$的一個承托函數(shù);
②函數(shù)g(x)=x-1是函數(shù)f(x)=x+sinx的一個承托函數(shù);
③若函數(shù)g(x)=ax是函數(shù)f(x)=ex的一個承托函數(shù),則a的取值范圍是[0,e];
④值域是R的函數(shù)f(x)不存在承托函數(shù).
其中正確的命題的個數(shù)為2.

查看答案和解析>>

同步練習(xí)冊答案