【題目】已知函數(shù).

1)當時,設,的兩個不同極值點,證明:

2)設,的兩個不同零點,證明:.

【答案】1)證明見解析;(2)證明見解析.

【解析】

1)求出函數(shù)的導函數(shù)的兩個不同極值點,轉化為為方程的兩不等正根,再利用韋達定理和基本不等式即可證明;

2)要證明,只要證明,分別利用導數(shù)進行證明即可.

(1)時,,

的兩個不同極值點,

為方程的兩不等正根,

,

且由韋達定理

,

.

2)要證明

,

下面分別證明,

兩式相加即得結論.

i,

即證.

令函數(shù),則

單調(diào)遞增,在單調(diào)遞減,

.

ii)再證明,

.

的兩個不同零點,不妨設,

-②可得,

兩邊同時乘以,

可得,

.

,則.

即證,

,

即證.

令函數(shù),

,

單調(diào)遞增,

.

由(i)(ii)可得

.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某市創(chuàng)衛(wèi)辦為了了解該市開展創(chuàng)衛(wèi)活動的成效,對市民進行了一次創(chuàng)衛(wèi)滿意程度測試,根據(jù)測試成績評定“合格”、“不合格”兩個等級,同時對相應等級進行量化:“合格”計5分,“不合格”計0分,現(xiàn)隨機抽取部分市民的回答問卷,統(tǒng)計結果及對應的頻率分布直方圖如圖所示:

等級

不合格

合格

得分

頻數(shù)

6

24

1)求的值;

2)按照分層抽樣的方法,從評定等級為“合格”和“不合格”的問卷中隨機抽取10份進行問題跟蹤調(diào)研,現(xiàn)再從這10份問卷中任選4份,記所選4份問卷的量化總分為,求的分布列及數(shù)學期望;

3)某評估機構以指標,其中表示的方差)來評估該市創(chuàng)衛(wèi)活動的成效.,則認定創(chuàng)衛(wèi)活動是有效的;否則認為創(chuàng)衛(wèi)活動無效,應該調(diào)整創(chuàng)衛(wèi)活動方案.在(2)的條件下,判斷該市是否應該調(diào)整創(chuàng)衛(wèi)活動方案?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】201911月份,全國工業(yè)生產(chǎn)者出廠價格同比下降,環(huán)比下降某企業(yè)在了解市場動態(tài)之后,決定根據(jù)市場動態(tài)及時作出相應調(diào)整,并結合企業(yè)自身的情況作出相應的出廠價格,該企業(yè)統(tǒng)計了20191~10月份產(chǎn)品的生產(chǎn)數(shù)量(單位:萬件)以及銷售總額(單位:十萬元)之間的關系如下表:

2.08

2.12

2.19

2.28

2.36

2.48

2.59

2.68

2.80

2.87

4.25

4.37

4.40

4.55

4.64

4.75

4.92

5.03

5.14

5.26

1)計算的值;

2)計算相關系數(shù),并通過的大小說明之間的相關程度;

3)求的線性回歸方程,并推測當產(chǎn)量為3.2萬件時銷售額為多少.(該問中運算結果保留兩位小數(shù))

附:回歸直線方程中的斜率和截距的最小二乘估計公式分別為;

相關系數(shù).

參考數(shù)據(jù):,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)為常數(shù),.

)若是函數(shù)的一個極值點,求的值;

)求證:當時,上是增函數(shù);

)若對任意的1,2),總存在,使不等式成立,求實數(shù)的取范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓經(jīng)過點,離心率為.

1)求橢圓的方程;

2)過點作兩條互相垂直的弦分別與橢圓交于點,求點到直線距離的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中為常數(shù).

(1)若直線是曲線的一條切線,求實數(shù)的值;

(2)當時,若函數(shù)上有兩個零點.求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了解全市統(tǒng)考情況,從所有參加考試的考生中抽取4000名考生的成績,頻率分布直方圖如下圖所示.

(1)求這4000名考生的半均成績(同一組中數(shù)據(jù)用該組區(qū)間中點作代表);

2)由直方圖可認為考生考試成績z服從正態(tài)分布,其中分別取考生的平均成績和考生成績的方差,那么抽取的4000名考生成績超過84.81分(含84.81分)的人數(shù)估計有多少人?

3)如果用抽取的考生成績的情況來估計全市考生的成績情況,現(xiàn)從全市考生中隨機抽取4名考生,記成績不超過84.81分的考生人數(shù)為,求.(精確到0.001

附:;

,則;

.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了提高學生的身體素質,某校高一、高二兩個年級共336名學生同時參與了我運動,我健康,我快樂的跳繩、踢毽等系列體育健身活動.為了了解學生的運動狀況,采用分層抽樣的方法從高一、高二兩個年級的學生中分別抽取7名和5名學生進行測試.下表是高二年級的5名學生的測試數(shù)據(jù)(單位:個/分鐘):

1)求高一、高二兩個年級各有多少人?

2)設某學生跳繩/分鐘,踢毽/分鐘.,且時,稱該學生為運動達人”.

①從高二年級的學生中任選一人,試估計該學生為運動達人的概率;

②從高二年級抽出的上述5名學生中,隨機抽取3人,求抽取的3名學生中為運動達人的人數(shù)的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,點在以為直徑的上運動,平面,且,點、分別是、的中點.

1)求證:平面平面;

2)若,求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

同步練習冊答案