分析 當體積最大時,平面ABC與底面BCD垂足,利用勾股定理計算AD.
解答 解:取BC的中點E,連結(jié)AE,DE,
∵AB=AC,BD=CD,
∴BC⊥AE,BC⊥DE,
∴∠AED為二面角A-BC-D的平面角,
∴A到平面BCD的距離d=AE•sin∠AED,
顯然當∠AED=90°時,四面體體積最大.
此時,AE=$\sqrt{A{B}^{2}-B{E}^{2}}$=2$\sqrt{2}$,DE=$\sqrt{C{D}^{2}-C{E}^{2}}$=$\sqrt{3}$,
∴AD=$\sqrt{A{E}^{2}+D{E}^{2}}$=$\sqrt{11}$.
故答案為:$\sqrt{11}$.
點評 本題考查了空間點到平面的距離計算,棱錐的體積計算,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{3}$ | B. | 2$\sqrt{3}$ | C. | 4 | D. | 12 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{2}$-1 | B. | $\sqrt{3}$-$\sqrt{2}$ | C. | $\frac{\sqrt{5}-1}{2}$ | D. | $\frac{3-2\sqrt{2}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{π}{2}$ | D. | π |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 9 | B. | 12 | C. | 18 | D. | 32 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $f(x)=2sin(2x+\frac{π}{6})$ | B. | $f(x)=2cos(2x+\frac{π}{6})$ | C. | $f(x)=sin(2x+\frac{π}{3})$ | D. | $f(x)=cos(2x+\frac{π}{3})$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com