(本小題滿分14分)給定函數(shù)
(1)試求函數(shù)的單調(diào)減區(qū)間;
(2)已知各項均為負的數(shù)列滿足,求證:;
(3)設(shè),為數(shù)列的前項和,求證:

(1) 的定義域為………1分 (此處不寫定義域,結(jié)果正確不扣分) 
…………3分   

單調(diào)減區(qū)間為………5分(答案寫成(0,2)扣1分;不寫區(qū)間形式扣1分)
(2)由已知可得,    當時,  
兩式相減得

時,,若,則這與題設(shè)矛盾
    ∴                      ……8分
于是,待證不等式即為。
為此,我們考慮證明不等式
,
再令,    由
∴當時,單調(diào)遞增   ∴  于是
       ①
,   由
∴當時,單調(diào)遞增   ∴  于是
     ②
由①、②可知              ………………10分
所以,,即   ………………11分
(3)由(2)可知  則 ……12分
中令n=1,2,3…………..2010,2011并將各式相加得
 ……13分
即      ………………14分

解析

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(1)討論函數(shù)在定義域內(nèi)的極值點的個數(shù);
(2)若函數(shù)處取得極值,對,恒成立,
求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分14分) 設(shè)函數(shù)f (x)=ln x在(0,) 內(nèi)有極值.
(Ⅰ) 求實數(shù)a的取值范圍;
(Ⅱ) 若x1∈(0,1),x2∈(1,+).求證:f (x2)-f (x1)>e+2-
注:e是自然對數(shù)的底數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分10分)一艘輪船在航行中的燃料費和它的速度的立方成正比,已知在速度為每小時10公里時的燃料費是每小時6元,而其他與速度無關(guān)的費用是每小時96元,問此輪船以何種速度航行時,能使行駛每公里的費用總和最?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分14分)
已知函數(shù),,
(Ⅰ)當時,若上單調(diào)遞增,求的取值范圍;
(Ⅱ)求滿足下列條件的所有實數(shù)對:當是整數(shù)時,存在,使得的最大值,的最小值;
(Ⅲ)對滿足(Ⅱ)的條件的一個實數(shù)對,試構(gòu)造一個定義在,且上的函數(shù),使當時,,當時,取得最大值的自變量的值構(gòu)成以為首項的等差數(shù)列。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)已知函數(shù)f(x)=,其中a , b , c是以d為公差的等差數(shù)列,且a>0,d>0.設(shè)[1-]上,,在,將點A, B, C,
(Ⅰ)求
(II)若⊿ABC有一邊平行于x軸,且面積為,求a ,d的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(12分)設(shè)函數(shù).          
(1)對于任意實數(shù),恒成立,求的最大值;
(2)若方程有且僅有一個實根,求的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分14分)已知函數(shù)(常數(shù).
(Ⅰ) 當時,求曲線在點處的切線方程;
(Ⅱ)討論函數(shù)在區(qū)間上零點的個數(shù)(為自然對數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

查看答案和解析>>

同步練習冊答案