20.現(xiàn)有一個底面半徑為3cm,母線長為5cm的圓錐實(shí)心鐵器,將其高溫融化后鑄成一個實(shí)心鐵球(不計損耗),則該鐵球的半徑是$\root{3}{9}$cm.

分析 該鐵球的半徑為r,先求出錐體體積,再由圓球體積=錐體體積,由此能求出結(jié)果.

解答 解:設(shè)該鐵球的半徑為r,
∵底面半徑為3cm,母線長為5cm的圓錐實(shí)心鐵器,
∴錐體的母線、半徑、高構(gòu)成直角三角形,∴h=$\sqrt{{5}^{2}-{3}^{2}}$=4,
錐體體積V=$\frac{1}{3}$×π×32×4=12π,
圓球體積=錐體體積V=$\frac{4}{3}π{r}^{3}$=12π,
解得r=$\root{3}{9}$.故答案為:$\root{3}{9}$.

點(diǎn)評 本題考查球半徑的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意圓錐和球的體積公式的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.某中學(xué)是走讀中學(xué),為了讓學(xué)生更有效率利用下午放學(xué)后的時間,學(xué)校在本學(xué)期第一次月考后設(shè)立了多間自習(xí)室,以便讓學(xué)生在自習(xí)室自主學(xué)習(xí)、完成作業(yè),同時每天派老師輪流值班.在本學(xué)期第二次月考后,高一某班數(shù)學(xué)老師統(tǒng)計了兩次考試該班數(shù)學(xué)成績優(yōu)良人數(shù)和非優(yōu)良人數(shù),得到如下2×2列聯(lián)表:
非優(yōu)良優(yōu)良總計
未設(shè)立自習(xí)室251540
設(shè)立自習(xí)室103040
總計354580
(1)能否在在犯錯誤的概率不超過0.005的前提下認(rèn)為設(shè)立自習(xí)室對提高學(xué)生成績有效;
(2)設(shè)從該班第一次月考的所有學(xué)生的數(shù)學(xué)成績中任取2個,取到優(yōu)良成績的個數(shù)為X,從該班第二次月考的所有學(xué)生的數(shù)學(xué)成績中任取2個,取到優(yōu)良成績的個數(shù)為Y,求X與Y的期望并比較大小,請解釋所得結(jié)論的實(shí)際意義.
下面的臨界值表供參考:
P(K2≥k00.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828
(參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知橢圓C的中心在原點(diǎn)O,焦點(diǎn)在x軸上,離心率為$\frac{1}{2}$,右焦點(diǎn)到右頂點(diǎn)的距離為1.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)是否存在與橢圓C交于A、B兩點(diǎn)的直線l:y=kx+m(k∈R),使得以AB為直徑的圓過原點(diǎn)?若存在,求出實(shí)數(shù)m的取值范圍,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若圓x2+y2+4x-2y-a2=0截直線x+y+5=0所得弦的長度為2,則實(shí)數(shù)a=( 。
A.±2B.-2C.±4D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知橢圓E:x2+3y2=m2(m>0)的左頂點(diǎn)是A,左焦點(diǎn)為F,上頂點(diǎn)為B.
(1)當(dāng)△AFB的面積為$\frac{\sqrt{3}-\sqrt{2}}{2}$時,求m的值;
(2)若直線l交橢圓E于M,N兩點(diǎn)(不同于A),以線段MN為直徑的圓過A點(diǎn),試探究直線l是否過定點(diǎn),若存在定點(diǎn),求出這個定點(diǎn)的坐標(biāo),若不存在定點(diǎn),請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知點(diǎn)M(4,t)在拋物線x2=4y上,則點(diǎn)M到焦點(diǎn)的距離為( 。
A.5B.6C.4D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在棱長為1的正方體ABCD-A1B1C1D1中,M、N分別是AB1、BC1的中點(diǎn).
(Ⅰ)求證:直線MN∥平面ABCD.
(Ⅱ)求B1到平面A1BC1的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)A,B分別是直線$y=\frac{{\sqrt{2}}}{2}x$和$y=-\frac{{\sqrt{2}}}{2}x$上的動點(diǎn),且$|AB|=2\sqrt{2}$.設(shè)O為坐標(biāo)原點(diǎn),動點(diǎn)P滿足$\overrightarrow{OP}=\overrightarrow{OA}+\overrightarrow{OB}$.
(Ⅰ) 求動點(diǎn)P的軌跡方程C1;
(Ⅱ)一直雙曲線C2以C1的上頂點(diǎn)為焦點(diǎn),且一條漸近線方程為x+2y=0,求雙曲線C2的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知f(x)=2$\sqrt{3}$sinxcos-cos(π+2x).
(Ⅰ)求f(x)的單調(diào)增區(qū)間;
(Ⅱ)在△ABC中,角A,B,C的對邊分別是a,b,c,若f(C)=1,c=$\sqrt{3}$,a+b=2$\sqrt{3}$,求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊答案