12.若關(guān)于x的不等式x2-ax-a≤-3的解集不是空集,則實數(shù)a的取值范圍是( 。
A.[2,+∞)B.(-∞,-6]C.[-6,2]D.(-∞,-6]∪[2,+∞)

分析 由已知得方程x2-ax-a+3=0有實數(shù)根,△≥0,由此求出a的取值范圍.

解答 解:由關(guān)于x的不等式x2-ax-a≤-3的解集不是空集,
得對應(yīng)方程x2-ax-a+3=0有實數(shù)根,
即△=a2+4(a-3)≥0,
解得a≥2或a≤-6;
所以a的取值范圍是(-∞,-6]∪[2,+∞).
故選:D.

點評 本題考查了一元二次不等式與對應(yīng)方程根的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知f(x+1)是偶函數(shù),且對任意x1、x2∈[1,+∞),當(dāng)x1≠x2時,都有不等式(x1-x2)[f(x1)-f(x2)]>0成立.若α、β是銳角△ABC的兩個內(nèi)角,則下列不等式一定成立的是( 。
A.f(cosα)≥f(cosβ)B.f(sinα)≤f(sinβ)C.f(sinα)≥f(cosβ)D.f(sinα)≤f(cosβ)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知a1=19,an+1=an-3,數(shù)列{an}的前n項和為Sn,則當(dāng)Sn取最大值時,n的值為7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知函數(shù)f(x)=|cosx|sinx,給出下列四個說法:
①函數(shù)f(x)的周期為π;
②若|f(x1)|=|f(x2)|,則x1=x2+kπ,k∈Z;
③f(x)在區(qū)間[-$\frac{π}{4}$,$\frac{π}{4}}$]上單調(diào)遞增;
④f(x)的圖象關(guān)于點(-$\frac{π}{2}$,0)中心對稱.
其中正確說法的個數(shù)是( 。
A.3個B.2個C.1個D.0個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.設(shè)關(guān)于x不等式x2+n2-x<3nx-n2-n(n∈N*)的解集中整數(shù)的個數(shù)為an,數(shù)列{${\frac{{2{a_n}+1}}{2^n}}\right.$}的前n項和為Dn,則滿足條件?n∈N*,Dn<t的常數(shù)t的最小整數(shù)為5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=sin2x+cosx+$\frac{5}{8}$a-$\frac{3}{2}$在閉區(qū)間[0,$\frac{π}{2}}$]上的最小值是2,求對應(yīng)的a值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.直線y=k(x-1)與圓x2+y2-2y-2=0的位置關(guān)系是( 。
A.相交B.相切C.相離D.以上皆有可能

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.關(guān)于θ的方程cosθ=lnsinθ,(θ∈(0,π))的解的個數(shù)為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若二次函數(shù)的圖象被x軸所截得的線段的長為2,且其頂點坐標(biāo)為(-1,-1),則此二次函數(shù)的解析式是y=x2+2x.

查看答案和解析>>

同步練習(xí)冊答案