1.設(shè)$f(x)=\left\{{\begin{array}{l}{{x^2},x∈[0,1)}\\{2-x,x∈[1,2]}\end{array}}\right.$,則$\int_0^2{f(x)dx=}$$\frac{5}{6}$.

分析 根據(jù)分段函數(shù)以及定積分的法則計(jì)算即可.

解答 解:$f(x)=\left\{{\begin{array}{l}{{x^2},x∈[0,1)}\\{2-x,x∈[1,2]}\end{array}}\right.$,
則$\int_0^2{f(x)dx=}$${∫}_{0}^{1}$x2dx+${∫}_{1}^{2}$(2-x)dx=$\frac{1}{3}{x}^{3}$|${\;}_{0}^{1}$+(2x-$\frac{1}{2}{x}^{2}$)|${\;}_{1}^{2}$=$\frac{1}{3}$+(4-2)-(2-$\frac{1}{2}$)=$\frac{5}{6}$,
故答案為:$\frac{5}{6}$

點(diǎn)評(píng) 本題考查了定積分的計(jì)算和分段函數(shù)的問題,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知曲線C1的參數(shù)方程為$\left\{\begin{array}{l}x=2t-1\\ y=-4t-2\end{array}\right.$(t為參數(shù)),以原點(diǎn)O為極點(diǎn),以x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為$ρ=\frac{2}{1-cosθ}$.
( I)求曲線C2的直角坐標(biāo)系方程;
( II)設(shè)M1是曲線C1上的點(diǎn),M2是曲線C2上的點(diǎn),求|M1M2|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知定義在R上的奇函數(shù)f(x)滿足f(x-2)=-f(x),且在區(qū)間[0,1]上是增函數(shù),則f(-25),f(17),f(32)的大小關(guān)系為f(-25)<f(32)<f(17)(從小到大排列)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在平面直角坐標(biāo)系中,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}x=2+2cosθ\\ y=2sinθ\end{array}\right.$($θ∈[{-\frac{π}{2},\frac{π}{2}}]$,θ為參數(shù))若以坐標(biāo)系原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為$θ=\frac{π}{4}$(ρ∈R).
(Ⅰ)求曲線C1的普通方程和曲線C2的直角坐標(biāo)方程;
(Ⅱ)將曲線C2向下平移m(m>0)個(gè)單位后得到的曲線恰與曲線C1有兩個(gè)公共點(diǎn),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=3+\frac{\sqrt{2}}{2}t}\\{y=\sqrt{5}+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t為參數(shù)).在極坐標(biāo)系(與直角坐標(biāo)系xOy取相同的長(zhǎng)度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,圓C的方程為ρ=2$\sqrt{5}$sinθ.
(I)求圓C的直角坐標(biāo)方程;
(II)設(shè)圓C與直線l交于點(diǎn)A、B,若點(diǎn)P的坐標(biāo)為(3,$\sqrt{5}$),求|PA|+|PB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知平面區(qū)域Ω:$\left\{\begin{array}{l}{3x+4y-18≤0}\\{x≥2}\\{y≥0}\end{array}\right.$夾在兩條斜率為-$\frac{3}{4}$的平行直線之間,且這兩條平行直線間的最短距離為m,若點(diǎn)P(x,y)∈Ω,且mx-y的最小值為p,$\frac{y}{x+m}$的最大值為q,則pq等于$\frac{27}{22}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.函數(shù)$f(x)=\sqrt{2}sinx(cosx+sinx)-\frac{{\sqrt{2}}}{2}$在區(qū)間$[{0,\frac{π}{2}}]$上的最小值是-$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線C:ρsin2θ=2cosθ,過點(diǎn)p(-3,-5)的直線$l:\left\{{\begin{array}{l}{x=-3+\frac{{\sqrt{2}}}{2}t}\\{y=-5+\frac{{\sqrt{2}}}{2}t}\end{array}}\right.$(t為參數(shù))與曲線C相交于點(diǎn)M,N兩點(diǎn).
(1)求曲線C的平面直角坐標(biāo)系方程和直線l的普通方程;
(2)求$\frac{1}{{|{PM}|}}+\frac{1}{{|{PN}|}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知集合A={x|-5≤x≤3},B={x|m+1<x<2m+3}且B⊆A,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案