11.已知曲線C1的參數(shù)方程為$\left\{\begin{array}{l}x=2t-1\\ y=-4t-2\end{array}\right.$(t為參數(shù)),以原點(diǎn)O為極點(diǎn),以x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為$ρ=\frac{2}{1-cosθ}$.
( I)求曲線C2的直角坐標(biāo)系方程;
( II)設(shè)M1是曲線C1上的點(diǎn),M2是曲線C2上的點(diǎn),求|M1M2|的最小值.

分析 (Ⅰ)把$ρ=\frac{2}{1-cosθ}$變形,得到ρ=ρcosθ+2,結(jié)合x=ρcosθ,y=ρsinθ得答案;
(Ⅱ)由$\left\{\begin{array}{l}x=2t-1\\ y=-4t-2\end{array}\right.$(t為參數(shù)),消去t得到曲線C1的直角坐標(biāo)方程為2x+y+4=0,由M1是曲線C1上的點(diǎn),M2是曲線C2上的點(diǎn),把|M1M2|的最小值轉(zhuǎn)化為M2到直線2x+y+4=0的距離的最小值.設(shè)M2(r2-1,2r),然后由點(diǎn)到直線的距離公式結(jié)合配方法求解.

解答 解:(I)由ρ=$\frac{2}{1-cosθ}$可得ρ=x+2,∴ρ2=(x+2)2①,
∵x=ρcosθ,y=ρsinθ,
∴x2+y2=ρ(cos2θ+sin2θ)=ρ2
由①②兩式子可得
y2=4(x+1);
(Ⅱ)曲線C1的參數(shù)方程為$\left\{\begin{array}{l}x=2t-1\\ y=-4t-2\end{array}$(t為參數(shù)),消去t得:2x+y+4=0.
∴曲線C1的直角坐標(biāo)方程為2x+y+4=0.
∵M(jìn)1是曲線C1上的點(diǎn),M2是曲線C2上的點(diǎn),
∴|M1M2|的最小值等于M2到直線2x+y+4=0的距離的最小值.
設(shè)M2(r2-1,2r),M2到直線2x+y+4=0的距離為d,
則d=$\frac{2|{r}^{2}+r+1|}{\sqrt{5}}$=$\frac{2[(r+\frac{1}{2})^{2}+\frac{3}{4}]}{\sqrt{5}}$≥$\frac{3\sqrt{5}}{10}$.
∴|M1M2|的最小值為$\frac{3\sqrt{5}}{10}$.

點(diǎn)評 本題考查了簡單曲線的極坐標(biāo)方程,考查了參數(shù)方程化普通方程,考查了點(diǎn)到直線的距離公式的應(yīng)用,是基礎(chǔ)的計(jì)算題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.邊長為1的等邊三角形ABC中,沿BC邊高線AD折起,使得折后二面角B-AD-C為60°,點(diǎn)D到平面ABC的距離為$\frac{\sqrt{15}}{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在△ABC中,點(diǎn)D為BC邊上一點(diǎn),且BD=1,E為AC的中點(diǎn),$AE=\frac{3}{2},cosB=\frac{{2\sqrt{7}}}{7},∠ADB=\frac{2π}{3}$.
(1)求sin∠BAD;
(2)求AD及DC的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知$α∈(\frac{π}{2},π)$,且$sinα=\frac{4}{5}$,則tanα=(  )
A.$\frac{3}{4}$B.$-\frac{3}{4}$C.$\frac{4}{3}$D.$-\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知二次函數(shù)f(x)滿足f(x+1)-f(x)=2x-1,且f(0)=3.
(1)求f(x)的解析式;
(2)若對任意互不相同的x1,x2∈(2,4),都有|f(x1)-f(x2)|<k|x1-x2|成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知$\overrightarrow{a},\overrightarrow$為同一平面內(nèi)的兩個(gè)不共線的向量,且$\overrightarrow{a}$=(1,2),$\overrightarrow$=(x,6),若|$\overrightarrow{a}-\overrightarrow$|=2$\sqrt{5}$,向量$\overrightarrow{c}$=2$\overrightarrow{a}+\overrightarrow$,則$\overrightarrow{c}$=(1,10).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知直線l交橢圓$\frac{{x}^{2}}{20}+\frac{{y}^{2}}{16}$=1于M,N兩點(diǎn),且線段MN的中點(diǎn)為(1,1),則直線l方程為5x+4y-9=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.設(shè)a,b,c均為正數(shù),且a+b+c=1.證明
(1)ab+bc+ac≤$\frac{1}{3}$
(2)$\frac{1}{a}+\frac{1}+\frac{1}{c}$≥9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.設(shè)$f(x)=\left\{{\begin{array}{l}{{x^2},x∈[0,1)}\\{2-x,x∈[1,2]}\end{array}}\right.$,則$\int_0^2{f(x)dx=}$$\frac{5}{6}$.

查看答案和解析>>

同步練習(xí)冊答案