6.如圖,ABCD是正方形,O是正方形的中心,PO⊥底面ABCD,E是PC的中點(diǎn).求證:
(1)PA∥平面BDE
 (2)PC⊥BD.

分析 (1)連接OE,OE∥PA,由直線與平面平行的判定定理,可證得PA∥平面BDE;
(2)由PO⊥底面ABCD,可得PO⊥BD;底面為正方形,可得BD⊥AC,由直線和平面垂直的判定定理,可得BD⊥平面PAC,可證得PC⊥BD.

解答 證明:(1)如圖,連接OE
∵O為AC中點(diǎn),E為PC中點(diǎn).
∴OE為△PAC的中位線,
∴OE∥PA,
∵OE?平面BDE,PA?平面BDE,
∴PA∥平面BDE.
(2)∵底面ABCD為正方形,
∴BD⊥AC,
∵PO⊥平面ABCD,BD?平面ABCD,
∴PO⊥BD,
∵PO?平面PAC,AC?平面PAC,AC∩PO=O,
∴BD⊥平面PAC,
∵PC?平面PAC,
∴PC⊥BD.

點(diǎn)評 本題主要考查了直線與平面平行的判定定理、直線和平面垂直的性質(zhì)、直線和平面垂直的判定定理與性質(zhì)定理,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若數(shù)列{an},{bn}的通項公式分別為an=(-1)n+2016•a,bn=2+$\frac{{{{(-1)}^{n+2017}}}}{n}$,且an<bn,對任意n∈N*恒成立,則實數(shù)a的取值范圍是( 。
A.$[-1,\frac{1}{2})$B.[-1,1)C.[-2,1)D.$[-2,\frac{3}{2})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知向量$\overrightarrow a•(\overrightarrow a+2\overrightarrow b)=0$,$|\overrightarrow a|=|\overrightarrow b|=2$,則向量$\overrightarrow a,\overrightarrow b$的夾角為( 。
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.函數(shù)$y={log_{\frac{1}{2}}}({x^2}-4x-5)$的遞增區(qū)間為(-∞,-1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.由代數(shù)式的乘法法則類比推導(dǎo)向量的數(shù)量積的運(yùn)算法則:
①“mn=nm”類比得到“$\overrightarrow{a}$•$\overrightarrow$=$\overrightarrow$•$\overrightarrow{a}$”;
②“(m+n)t=mt+nt”類比得到“($\overrightarrow{a}$+$\overrightarrow$)•$\overrightarrow{c}$=$\overrightarrow{a}$•$\overrightarrow{c}$+$\overrightarrow$•$\overrightarrow{c}$”;
③“t≠0,mt=nt⇒m=n”類比得到“$\overrightarrow{c}$≠0,$\overrightarrow{a}$•$\overrightarrow{c}$=$\overrightarrow$•$\overrightarrow{c}$⇒$\overrightarrow{a}$=$\overrightarrow$”;
④“|m•n|=|m|•|n|”類比得到“|$\overrightarrow{a}$•$\overrightarrow$|=|$\overrightarrow{a}$|•|$\overrightarrow$|”;
⑤“(m•n)t=m(n•t)”類比得到“($\overrightarrow{a}$•$\overrightarrow$)•$\overrightarrow{c}$=$\overrightarrow{a}$($\overrightarrow$•$\overrightarrow{c}$)”;
⑥“$\frac{ac}{bc}$=$\frac{a}$”類比得到$\frac{\overrightarrow{a}•\overrightarrow{c}}{\overrightarrow•\overrightarrow{c}}$=$\frac{\overrightarrow{a}}{\overrightarrow}$.以上的式子中,類比得到的結(jié)論正確的是①②.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知$\overrightarrow a,\overrightarrow b$均為單位向量,它們的夾角為60°,那么$|{3\overrightarrow a+\overrightarrow b}|$等于( 。
A.4B.$\sqrt{13}$C.$\sqrt{10}$D.$\sqrt{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知角α的終邊過點(diǎn)$P(\frac{1}{2},\frac{{\sqrt{3}}}{2})$,則sinα=( 。
A.$\frac{1}{2}$B.$\sqrt{3}$C.$\frac{{\sqrt{3}}}{2}$D.$-\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.在10件產(chǎn)品中,有8種合格品,2件次品,從這10件產(chǎn)品中任意抽出3件,抽出的3件中至少有1件是次品的抽法種數(shù)為( 。
A.64B.72C.384D.432

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若函數(shù)f(x)=$\frac{1}{3}{x^3}+a{x^2}$+bx+c有極值點(diǎn)x1,x2(x1<x2),且f(x1)=x1,則關(guān)于x的方程[f(x)]2+2af(x)+b=0的不同實數(shù)根的個數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊答案