16.若函數(shù)f(x)=$\frac{1}{3}{x^3}+a{x^2}$+bx+c有極值點(diǎn)x1,x2(x1<x2),且f(x1)=x1,則關(guān)于x的方程[f(x)]2+2af(x)+b=0的不同實(shí)數(shù)根的個(gè)數(shù)為( 。
A.1B.2C.3D.4

分析 函數(shù)f(x)=$\frac{1}{3}{x^3}+a{x^2}$+bx+c有兩個(gè)極值點(diǎn)x1,x2,f′(x)=x2+2ax+b=0有兩個(gè)不相等的實(shí)數(shù)根,△=4a2-4b>0.而方程(f(x))2+2af(x)+b=0的△1=△>0,可知此方程有兩解且f(x)=x1或x2.再分別討論利用平移變換即可解出方程f(x)=x1或f(x)=x2解得個(gè)數(shù).

解答 解:函數(shù)f(x)=$\frac{1}{3}{x^3}+a{x^2}$+bx+c有兩個(gè)極值點(diǎn)x1,x2,
∴f′(x)=x2+2ax+b=0有兩個(gè)不相等的實(shí)數(shù)根,
∴△=4a2-4b>0.
而方程(f(x))2+2af(x)+b=0的△1=△>0,
∴此方程有兩解且f(x)=x1或x2,
不妨取0<x1<x2,f(x1)>0.
①把y=f(x)向下平移x1個(gè)單位即可得到y(tǒng)=f(x)-x1的圖象,
∵f(x1)=x1,可知方程f(x)=x1有兩解.
②把y=f(x)向下平移x2個(gè)單位即可得到y(tǒng)=f(x)-x2的圖象,∵f(x1)=x1,∴f(x1)-x2<0,可知方程f(x)=x2只有一解.
綜上①②可知:方程f(x)=x1或f(x)=x2.只有3個(gè)實(shí)數(shù)解.即關(guān)于x的方程3(f(x))2+af(x)+b=0的只有3不同實(shí)根.
故選:C.

點(diǎn)評 本題考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性極值、方程的解轉(zhuǎn)化為函數(shù)圖象的交點(diǎn),考查了推理能力與計(jì)算能力,屬于難題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖,ABCD是正方形,O是正方形的中心,PO⊥底面ABCD,E是PC的中點(diǎn).求證:
(1)PA∥平面BDE
 (2)PC⊥BD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知數(shù)列{an}中,a1=3,an+1=$\frac{1}{{a}_{n}-1}$+1,則a2014=( 。
A.-$\frac{1}{2}$B.$\frac{3}{2}$C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知以點(diǎn)C為圓心的圓經(jīng)過點(diǎn)A(-1,2)和點(diǎn)B(3,4),且圓心在直線x+3y-15=0上.
(1)求圓C的方程;
(2)設(shè)點(diǎn)P在圓C上,求△PAB的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.曲線y=alnx(a>0)在x=1處的切線與兩坐標(biāo)軸所圍成的三角形的面積為4,則a的值為( 。
A.4B.-4C.8D.-8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知圓${(x-1)^2}+{y^2}=\frac{3}{4}$的一條切線y=kx與雙曲線$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$沒有公共點(diǎn),則雙曲線C的離心率的取值范圍是( 。
A.$(1,\sqrt{3})$B.(1,2]C.$(\sqrt{3},+∞)$D.[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.與-437°角終邊相同的角的集合是( 。
A.{α|α=k•360°+437°,k∈Z}B.{α|α=k•360°+77°,k∈Z}
C.{α|α=k•360°+283°,k∈Z}D.{α|α=k•360°-283°,k∈Z}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知正四棱錐的底面邊長是2cm,側(cè)棱長是$\sqrt{3}$cm,則該正四棱錐的體積為$\frac{4}{3}c{m}^{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.在△ABC中,角A,B,C對應(yīng)的邊分別為a,b,c,已知b=$\sqrt{2}$c,sinA+$\sqrt{2}$sinC=2sinB,則sinA=$\frac{\sqrt{14}}{4}$.

查看答案和解析>>

同步練習(xí)冊答案