分析 由已知利用正弦定理可求a=$\sqrt{2}$c,進而利用余弦定理可求cosA,根據(jù)同角三角函數(shù)基本關(guān)系式即可求得sinA的值.
解答 解:∵b=$\sqrt{2}$c,sinA+$\sqrt{2}$sinC=2sinB,
∴a+$\sqrt{2}$c=2b=2$\sqrt{2}$c,
∴a=$\sqrt{2}$c,
∴cosA=$\frac{^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{\sqrt{2}}{4}$,
∴sinA=$\sqrt{1-co{s}^{2}A}$=$\frac{\sqrt{14}}{4}$.
故答案為:$\frac{\sqrt{14}}{4}$.
點評 本題主要考查了正弦定理,余弦定理,同角三角函數(shù)基本關(guān)系式在解三角形中的綜合應(yīng)用,考查了計算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (x+1)2+y2=2 | B. | x2+(y+2)2=2 | ||
C. | (x+3)2+y2=2 | D. | (x+1)2+y2=2或(x+3)2+y2=2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0.4 | B. | 0.2 | C. | 0.1 | D. | 0.6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0.16 | B. | 0.34 | C. | 0.42 | D. | 0.84 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{5π}{6}$ | B. | $\frac{π}{6}$ | C. | $\frac{2π}{3}$ | D. | $-\frac{π}{6}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com