6.已知圓C的圓心坐標為(3,2),拋物線x2=-4y的準線被圓C截得的弦長為2,則圓C的方程為(x-3)2+(y-2)2=2.

分析 求出準線方程,計算圓心到直線的距離,利用垂徑定理計算圓的半徑,得出圓的方程.

解答 解:拋物線x2=-4y的準線方程為:y=1.
∴圓心C(3,2)到直線y=1的距離d=1.
∴圓的半徑r=$\sqrt{{1}^{2}+{(\frac{2}{2})}^{2}}$=$\sqrt{2}$,
∴圓的方程為:(x-3)2+(y-2)2=2.
故答案為:(x-3)2+(y-2)2=2.

點評 本題考查了拋物線的準線方程,直線與圓的位置關系,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

12.已知函數(shù)f(x)=2cos2ωx+$\sqrt{3}$sin2ωx(ω>0)的最小正周期為π,給出下列四個命題:
(1)f(x)的最大值為3;
(2)將f(x)的圖象向左平移$\frac{π}{3}$后所得的函數(shù)是偶函數(shù);
(3)f(x)在區(qū)間[-$\frac{π}{3}$,$\frac{π}{6}$]上單調遞增;
(4)f(x)的圖象關于直線x=$\frac{π}{6}$對稱.
其中正確說法的序號是( 。
A.(2)(3)B.(1)(4)C.(1)(2)(4)D.(1)(3)(4)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.某高校進行自主招生測試,報考學生有500人,其中男生300人,女生200人,為了研究學生的成績是否與性別有關,現(xiàn)采用分層抽樣的方法,從中抽取了100名學生,先統(tǒng)計了他們測試的分數(shù),然后按性別分為男、女兩組,再將兩組學生的分數(shù)分成4組:[70,90),[90,110),[110,130),[130,150]分別加以統(tǒng)計,得到如圖所示的頻率分布直方圖.

(Ⅰ)根據(jù)頻率分布直方圖可以估計女生測試成績的平均值為103.5,請你估計男生測試成績的平均值,由此推斷男、女生測試成績的平均水平的高低;
(Ⅱ)若規(guī)定分數(shù)不小于110分的學生為“優(yōu)秀生”,請你根據(jù)已知條件完成2×2列聯(lián)表,并判斷是否有90%的把握認為“優(yōu)秀生與性別有關”?
優(yōu)秀生非優(yōu)秀生合計
男生
女生
合計
參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
參考數(shù)據(jù):
P(K2≥k00.1000.0500.0100.001
k02.7063.8416.63510.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.某市要進行城市環(huán)境建設,要把一個三角形的區(qū)域改造成街心花園,經(jīng)過測量得到這個三角形區(qū)域的三條邊分別為56米、72米和112米,問這個區(qū)域的面積是多少?(精確到0.1平方米)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1(a>b>0)$的焦距為2$\sqrt{3}$,一條準線方程為x=$\frac{4\sqrt{3}}{3}$.過點(0,-2)的直線l交橢圓于A,C兩點(異于橢圓頂點),橢圓的上頂點為B,直線AB,BC的斜率分別為k1,k2
(1)求橢圓C的標準方程;
(2)當∠CAB=90°時,求直線l的斜率;
(3)當直線l的斜率變化時,求k1•k2的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.函數(shù)f(x)=mx3-x在(-∞,+∞)上是減函數(shù),則m的取值范圍是( 。
A.(-∞,0)B.(-∞,1)C.(-∞,0]D.(-∞,1]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知$sin(\frac{π}{6}-α)=cos(\frac{π}{6}+α)$,則cos2α=( 。
A.1B.-1C.$\frac{1}{2}$D.0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知函數(shù)f(x)=$\frac{ln(x+1)}{x}$.
(1)判斷f(x)在(0,+∞)的單調性;
(2)若x>0,證明:(ex-1)ln(x+1)>x2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知平面直角坐標系xOy中,以O為極點,x軸的非負半軸為極軸建立極坐標系,P點的極坐標為(3,$\frac{π}{4}$).曲線C的參數(shù)方程為ρ=2cos(θ-$\frac{π}{4}$)(θ為參數(shù)).
(Ⅰ)寫出點P的直角坐標及曲線C的直角坐標方程;
(Ⅱ)若Q為曲線C上的動點,求PQ的中點M到直線l:2ρcosθ+4ρsinθ=$\sqrt{2}$的距離的最小值.

查看答案和解析>>

同步練習冊答案