8.已知f(x)=ax4+bx2+c的圖象經(jīng)過(guò)點(diǎn)(0,1),且在x=1處的切線方程是y=x-2
(Ⅰ)求實(shí)數(shù)a,c的值;
(Ⅱ)求y=f(x)的單調(diào)遞增區(qū)間.

分析 (Ⅰ)利用f(x)=ax4+bx2+c的圖象經(jīng)過(guò)點(diǎn)(0,1),求出c,求出導(dǎo)函數(shù),求出斜率,求出切點(diǎn),然后求解即可.
(Ⅱ)求出函數(shù)的導(dǎo)數(shù),通過(guò)導(dǎo)函數(shù)的符號(hào)求解不等式得到函數(shù)的單調(diào)增區(qū)間即可.

解答 解:(Ⅰ)f(x)=ax4+bx2+c的圖象經(jīng)過(guò)點(diǎn)(0,1),
則c=1,f′(x)=4ax3+2bx,k=f′(1)=4a+2b=1,
切點(diǎn)為(1,-1),則f(x)=ax4+bx2+c的圖象經(jīng)過(guò)點(diǎn)(1,-1)
得$a+b+c=-1,得a=\frac{5}{2},b=-\frac{9}{2}$,c=1.…(7分)
(Ⅱ)$f(x)=\frac{5}{2}{x^4}-\frac{9}{2}{x^2}+1$,${f^'}(x)=10{x^3}-9x>0,\;\;⇒-\frac{{3\sqrt{10}}}{10}<x<0,或x>\frac{{3\sqrt{10}}}{10}$
單調(diào)遞增區(qū)間為$(-\frac{{3\sqrt{10}}}{10},0)$和$(\frac{{3\sqrt{10}}}{10},+∞)$…(12分)

點(diǎn)評(píng) 本題考查函數(shù)的導(dǎo)數(shù)的應(yīng)用,切線方程以及單調(diào)區(qū)間的求法,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知無(wú)窮等比數(shù)列{an}各項(xiàng)和是$\frac{9}{4}$,且數(shù)列{an}各項(xiàng)平方和為$\frac{81}{8}$,則數(shù)列{an}的公比為$-\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.設(shè)函數(shù)f(x)=ax3-bx+4(a,b∈R),當(dāng)x=2時(shí),函數(shù)f(x)有極值$-\frac{4}{3}$.
(1)求函數(shù)f(x)的解析式;
(2)若方程f(x)=k有3個(gè)不同的根,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.化簡(jiǎn)$\overrightarrow{AC}+\overrightarrow{DB}+\overrightarrow{CD}$=$\overrightarrow{AB}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.過(guò)點(diǎn)(1,0)作傾斜角為$\frac{3π}{4}$的直線與y2=4x交于A、B,則AB的弦長(zhǎng)為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.求不等式2cos($\frac{x}{2}$-$\frac{π}{4}$)>$\sqrt{3}$的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知p:x∈$\left\{{x\left|{\frac{x+2}{x-10}≤0}\right.}\right\}$,q:x∈{x|x2-2x+1-m2<0,m>0},若p是q的必要不充分條件,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知正數(shù)a,b滿足4a+b=ab,則a+b的最小值為9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.若橢圓C1:$\frac{{x}^{2}}{{{a}_{1}}^{2}}$+$\frac{{y}^{2}}{{_{1}}^{2}}$=1(a1>b1>0)和橢圓C2:$\frac{{x}^{2}}{{{a}_{2}}^{2}}$+$\frac{{y}^{2}}{{_{2}}^{2}}$=1(a2>b2>0)的焦點(diǎn)相同且a1>a2.給出如下四個(gè)結(jié)論:
①橢圓C1與橢圓C2一定沒(méi)有公共點(diǎn)        
②$\frac{{a}_{1}}{{a}_{2}}$>$\frac{_{1}}{_{2}}$
③a12-a22=b12-b22
④a1-a2=b1-b2
其中所有正確結(jié)論的序號(hào)是(  )
A.①②③B.①③④C.①②④D.②③④

查看答案和解析>>

同步練習(xí)冊(cè)答案