20.曲線y=e-2x-2在點(diǎn)(0,-1)處的切線方程為2x+y+1=0.

分析 求出原函數(shù)的導(dǎo)函數(shù),得到函數(shù)在x=0處的導(dǎo)數(shù),即函數(shù)在點(diǎn)(0,-1)處的切線的斜率,代入直線方程的斜截式得答案.

解答 解:由y=e-2x-2,得y′=-2e-2x,
∴y′|x=0=-2,
則曲線y=e-2x-2在點(diǎn)(0,-1)處的切線方程為y=-2x-1.
即2x+y+1=0.
故答案為:2x+y+1=0.

點(diǎn)評(píng) 本題考查利用導(dǎo)數(shù)研究過曲線上某點(diǎn)處的切線方程,過曲線上某點(diǎn)處的切線的斜率,就是函數(shù)在該點(diǎn)處的導(dǎo)數(shù)值,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.在函數(shù)y=2x,y=x2,y=2x,y=cosx中,偶函數(shù)的個(gè)數(shù)是( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.函數(shù)y=x2-x3的單調(diào)增區(qū)間為(  )
A.(0,+∞)B.(0,$\frac{2}{3}$)C.($\frac{1}{2}$,+∞)D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.設(shè)函數(shù)f(x)在R上的導(dǎo)函數(shù)為f′(x),對(duì)?x∈R有f(x)+f(-x)=x2,且在(0,+∞)上有f′(x)-x<0,若f(4-m)-f(m)≥8-4m,則實(shí)數(shù)m的取值范圍是[2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.若x=$(\frac{1}{5})^{-0.3}$,y=log52,z=${e}^{-\frac{1}{2}}$,則( 。
A.x<y<zB.z<x<yC.z<y<xD.y<z<x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.函數(shù)f(x)=($\frac{1}{2}$)x-lgx零點(diǎn)的個(gè)數(shù)為(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.直線$\sqrt{3}$x-y+1=0的傾斜角的大小是( 。
A.45°B.60°C.120°D.135°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.現(xiàn)有以下兩項(xiàng)調(diào)查:①某裝訂廠平均每小時(shí)大約裝訂圖書362冊(cè),要求檢驗(yàn)員每小時(shí)抽取40冊(cè)圖書,檢查其裝訂質(zhì)量狀況;②某市有大型、中型與小型的商店共1500家,三者數(shù)量之比為1:5:9.為了調(diào)查全市商店每日零售額情況,抽取其中15家進(jìn)行調(diào)查.完成①、②這兩項(xiàng)調(diào)查宜采用的抽樣方法依次是(  )
A.簡(jiǎn)單隨機(jī)抽樣法,分層抽樣B.分層抽樣法,簡(jiǎn)單隨機(jī)抽樣法
C.分層抽樣法,系統(tǒng)抽樣法D.系統(tǒng)抽樣法,分層抽樣法

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.甲、乙、丙三人中只有一人去過陳家祠,當(dāng)他們被問到誰(shuí)去過時(shí),甲說:“丙沒有去”;乙說:“我去過”;丙說:“甲說的是真話”.若三人中只有一人說的是假話,那么去過陳家祠的人是( 。
A.B.C.D.不能確定

查看答案和解析>>

同步練習(xí)冊(cè)答案