【題目】已知 ,(本題不作圖不得分)
(1)求 的最大值和最小值;
(2)求 的取值范圍.
【答案】(1)最大值為12,最小值3; (2).
【解析】
(1)由約束條件作出可行域,化目標(biāo)函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,聯(lián)立方程組求得最優(yōu)解的坐標(biāo),把最優(yōu)解的坐標(biāo)代入目標(biāo)函數(shù)得結(jié)論;(2)的幾何意義表示區(qū)域內(nèi)的點(diǎn)與連接直線的斜率,可得與連接的直線斜率最小,與連接的直線斜率最大,從而可得結(jié)果.
(1)由已知得到平面區(qū)域:z=2x+y變形為y=-2x+z,
當(dāng)此直線經(jīng)過(guò)圖中A時(shí)使得直線在y軸的截距最小,z最小,
經(jīng)過(guò)圖中B時(shí)在y軸的截距最大,z 最大,A(1,1),B(5,2),
所以z=2x+y的最大值為2×5+2=12,最小值2×1+1=3;
(2)的幾何意義表示區(qū)域內(nèi)的點(diǎn)與(-1,-1)連接直線的斜率,
所以與B連接的直線斜率最小,與C連接的直線斜率最大,
所以的最小值為,最大值為
所以 的取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓M過(guò)C(1,-1),D(-1,1)兩點(diǎn),且圓心M在x+y-2=0上.
(1)求圓M的方程;
(2)設(shè)點(diǎn)P是直線3x+4y+8=0上的動(dòng)點(diǎn),PA,PB是圓M的兩條切線,A,B為切點(diǎn),求四邊形PAMB面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知雙曲線C: (a>0,b>0)的離心率為2,右頂點(diǎn)為(1,0).
(1)求雙曲線C的方程;
(2)設(shè)直線y=-x+m與y軸交于點(diǎn)P,與雙曲線C的左、右支分別交于點(diǎn)Q,R,且=2,求m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)橢圓的右頂點(diǎn)為A,上頂點(diǎn)為B.已知橢圓的離心率為,.
(1)求橢圓的方程;
(2)設(shè)直線與橢圓交于,兩點(diǎn),與直線交于點(diǎn)M,且點(diǎn)P,M均在第四象限.若的面積是面積的2倍,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-5:不等式選講
已知不等式|x+3|﹣2x﹣1<0的解集為(x0 , +∞)
(Ⅰ)求x0的值;
(Ⅱ)若函數(shù)f(x)=|x﹣m|+|x+ |﹣x0(m>0)有零點(diǎn),求實(shí)數(shù)m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】霧霾大氣嚴(yán)重影響人們的生活,某科技公司擬投資開(kāi)發(fā)新型節(jié)能環(huán)保產(chǎn)品,策劃部制定投資計(jì)劃時(shí),不僅要考慮可能獲得的盈利,而且還要考慮可能出現(xiàn)的虧損,經(jīng)過(guò)市場(chǎng)調(diào)查,公司打算投資甲、乙兩個(gè)項(xiàng)目,根據(jù)預(yù)測(cè),甲、乙項(xiàng)目可能的最大盈利率分別為和,可能的最大虧損率分別為和,投資人計(jì)劃投資金額不超過(guò)9萬(wàn)元,要求確?赡艿馁Y金虧損不超過(guò)萬(wàn)元.
Ⅰ若投資人用x萬(wàn)元投資甲項(xiàng)目,y萬(wàn)元投資乙項(xiàng)目,試寫(xiě)出x,y所滿(mǎn)足的條件,并在直角坐標(biāo)系內(nèi)作出表示x,y范圍的圖形.
Ⅱ根據(jù)的規(guī)劃,投資公司對(duì)甲、乙兩個(gè)項(xiàng)目分別投資多少萬(wàn)元,才能使可能的盈利最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知中心在原點(diǎn),焦點(diǎn)在軸上,離心率為的橢圓過(guò)點(diǎn).
(1)求橢圓的方程;
(2)設(shè)橢圓與軸的非負(fù)半軸交于點(diǎn),過(guò)點(diǎn)作互相垂直的兩條直線,分別交橢圓于兩點(diǎn),連接,求的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在如圖所示的幾何體中,四邊形為正方形,四邊形為直角梯形,且, ,平面平面, .
()求證: 平面.
()若二面角為直二面角,
(i)求直線與平面所成角的大。
(ii)棱上是否存在點(diǎn),使得平面?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 通項(xiàng)公式為 .
(Ⅰ)計(jì)算f(1),f(2),f(3)的值;
(Ⅱ)比較f(n)與1的大小,并用數(shù)學(xué)歸納法證明你的結(jié)論.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com