【題目】設(shè)橢圓的離心率是,過點的動直線于橢圓相交于兩點,當(dāng)直線平行于軸時,直線被橢圓截得弦長為

(Ⅰ)求的方程;

(Ⅱ)在上是否存在與點不同的定點,使得直線的傾斜角互補?若存在,求的坐標(biāo);若不存在,說明理由.

【答案】(Ⅰ);(Ⅱ).

【解析】

(Ⅰ)由橢圓的離心率公式和點滿足橢圓方程,結(jié)合的關(guān)系,解方程可得進而得到橢圓方程;

(Ⅱ)假設(shè)存在定點,使得直線的傾斜角互補,可設(shè)點的坐標(biāo)為,即有,運用直線的斜率公式,化簡整理,結(jié)合恒成立問題解法,即可得到所求定點.

(Ⅰ)由已知可得,橢圓經(jīng)過點,

因此,,解得,

所以橢圓E方程為;

(Ⅱ)設(shè)點的坐標(biāo)為

當(dāng)直線x軸垂直時,直線的傾斜角均為,滿足題意,

此時,且;

當(dāng)直線的斜率存在時,可設(shè)直線的方程為,,

聯(lián)立,得,

其判別式

,

直線的傾斜角互補,

,

,

,

整理得,

代入得,

所以,即,

綜上所述存在與點不同的定點滿足題意.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在四邊形中:,,,,.點為四邊形的外接圓劣弧(不含)上一動點.

1)證明:;

2)若,設(shè),,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知如圖, 平面,四邊形為等腰梯形, , .

(1)求證:平面平面;

(2)已知中點,求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),且).

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)求函數(shù)上的最大值.

【答案】(Ⅰ)的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為.(Ⅱ)當(dāng)時, ;當(dāng)時, .

【解析】試題分析】(I)利用的二階導(dǎo)數(shù)來研究求得函數(shù)的單調(diào)區(qū)間.(II) 由(Ⅰ)得上單調(diào)遞減,在上單調(diào)遞增,由此可知.利用導(dǎo)數(shù)和對分類討論求得函數(shù)在不同取值時的最大值.

試題解析】

(Ⅰ),

設(shè) ,則.

, ,∴上單調(diào)遞增,

從而得上單調(diào)遞增,又∵,

∴當(dāng)時, ,當(dāng)時, ,

因此, 的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為.

(Ⅱ)由(Ⅰ)得上單調(diào)遞減,在上單調(diào)遞增,

由此可知.

,

.

設(shè),

.

∵當(dāng)時, ,∴上單調(diào)遞增.

又∵,∴當(dāng)時, ;當(dāng)時, .

①當(dāng)時, ,即,這時, ;

②當(dāng)時, ,即,這時, .

綜上, 上的最大值為:當(dāng)時,

當(dāng)時, .

[點睛]本小題主要考查函數(shù)的單調(diào)性,考查利用導(dǎo)數(shù)求最大值. 與函數(shù)零點有關(guān)的參數(shù)范圍問題,往往利用導(dǎo)數(shù)研究函數(shù)的單調(diào)區(qū)間和極值點,并結(jié)合特殊點,從而判斷函數(shù)的大致圖像,討論其圖象與軸的位置關(guān)系,進而確定參數(shù)的取值范圍;或通過對方程等價變形轉(zhuǎn)化為兩個函數(shù)圖象的交點問題.

型】解答
結(jié)束】
22

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,圓的普通方程為. 在以坐標(biāo)原點為極點,軸正半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為 .

(Ⅰ) 寫出圓 的參數(shù)方程和直線的直角坐標(biāo)方程;

( Ⅱ ) 設(shè)直線軸和軸的交點分別為,為圓上的任意一點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下圖是某省從121日至224日的新冠肺炎每日新增確診病例變化曲線圖.

若該省從121日至224日的新冠肺炎每日新增確診人數(shù)按日期順序排列構(gòu)成數(shù)列的前n項和為,則下列說法中正確的是(

A.數(shù)列是遞增數(shù)列B.數(shù)列是遞增數(shù)列

C.數(shù)列的最大項是D.數(shù)列的最大項是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,且過點.

(Ⅰ)求橢圓的方程;

(Ⅱ)過橢圓的左焦點的直線與橢圓交于兩點,直線過坐標(biāo)原點且與直線的斜率互為相反數(shù).若直線與橢圓交于兩點且均不與點重合,設(shè)直線軸所成的銳角為,直線軸所成的銳角為,判斷的大小關(guān)系并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下圖是某省從121日至224日的新冠肺炎每日新增確診病例變化曲線圖.

若該省從121日至224日的新冠肺炎每日新增確診人數(shù)按日期順序排列構(gòu)成數(shù)列,的前n項和為,則下列說法中正確的是(

A.數(shù)列是遞增數(shù)列B.數(shù)列是遞增數(shù)列

C.數(shù)列的最大項是D.數(shù)列的最大項是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在以下命題中,不正確的個數(shù)為(  )

b共線的充要條件;②若,則存在唯一的實數(shù)λ,使λ;③對空間任意一點O和不共線的三點AB,C,若22,則P,AB,C四點共面;④若{,,}為空間的一個基底,則{,,}構(gòu)成空間的另一個基底;⑤ |(·|||·||·||.

A. 2B. 3C. 4D. 5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的離心率為,直線交橢圓、兩點,橢圓的右頂點為,且滿足.

(1)求橢圓的方程;

(2)若直線與橢圓交于不同兩點,且定點滿足,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案