19.已知直線l:kx-y-3=0與圓O:x2+y2=4交于A、B兩點且$\overrightarrow{OA}$•$\overrightarrow{OB}$=2,則k=( 。
A.2B.±$\sqrt{2}$C.±2D.$\sqrt{2}$

分析 求出圓的半徑,利用直線與圓的位置關系,推出圓心到直線的距離,列出方程求解即可.

解答 解:圓O:x2+y2=4圓心(0,0),半徑為2,
直線l:kx-y-3=0與圓O:x2+y2=4交于A、B兩點且$\overrightarrow{OA}$•$\overrightarrow{OB}$=2,
可得2×2×cosθ=2,解得cosθ=$\frac{1}{2}$,θ=$\frac{π}{3}$,
圓心到直線的距離為:2cos$\frac{π}{6}$=$\sqrt{3}$,
可得:$\frac{|-3|}{\sqrt{1+{k}^{2}}}=\sqrt{3}$,解得k=$±\sqrt{2}$.
故選:B.

點評 本題考查直線與圓的位置關系的應用,向量數(shù)量積的應用,考查轉(zhuǎn)化思想以及計算能力.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

9.已知函數(shù)f(x)=ex(2x-1)-a(x-1)有兩個不同的零點,則實數(shù)a的取值范圍是( 。
A.(-∞,1)B.(0,1)C.(4e${\;}^{\frac{3}{2}}$,+∞)D.(0,1)∪(4e${\;}^{\frac{3}{2}}$,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知點M(x,y)是圓C:x2+y2-2x=0的內(nèi)部任意一點,則點M滿足y≥x的概率是( 。
A.$\frac{1}{4}$B.$\frac{π-2}{4}$C.$\frac{1}{2π}$D.$\frac{π-2}{4π}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.在直角坐標系xOy中,以O為極點,x軸的非負半軸為極軸建立極坐標系,已知曲線C:ρsin2θ=2acosθ(a>0),l:$\left\{\begin{array}{l}{x=-2+\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$(t為參數(shù))
(1)求曲線C的普通方程,l的直角坐標方程
(2)設l與C交于M,N兩點,點P(-2,0),若|PM|,|MN|,|PN|成等比數(shù)列,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.某校為了解學生學習的情況,采用分層抽樣的方法從高一2400人、高二 2000人、高三n人中,抽取90人進行問卷調(diào)查.已知高一被抽取的人數(shù)為36,那么高三被抽取的人數(shù)為( 。
A.20B.24C.30D.32

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.在等差數(shù)列{an}中,a1=2017,其前n項和為Sn,若$\frac{{S}_{2013}}{2013}$-$\frac{{S}_{2011}}{2011}$=2,則S2017=2017.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,且tanA,tanB是關于x的方程x2+(1+p)x+p+2=0的兩個根,c=4.
(1)求角C的大。
(2)求△ABC面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.連續(xù)兩次拋擲一枚骰子,記錄向上的點數(shù),則向上的點數(shù)之差的絕對值為3的概率是(  )
A.$\frac{1}{6}$B.$\frac{1}{12}$C.$\frac{1}{9}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.華中師大附中中科教處為了研究高一學生對物理和數(shù)學的學習是否與性別有關,從高一年級抽取60名同學(男同學30名,女同學30名),給所有同學物理題和數(shù)學題各一題,讓每位同學自由選擇一道題進行解答.選題情況如表:(單位:人)
物理題數(shù)學題總計
男同學161430
女同學82220
總計243660
(1)在犯錯誤的概率不超過1%的條件下,能否判斷高一學生對物理和數(shù)學的學習與性別有關?
(2)經(jīng)過多次測試后發(fā)現(xiàn),甲每次解答一道物理題所用的時間為5-8分鐘,乙每次解答一道物理題所用的時間為6-8分鐘,現(xiàn)甲、乙解同一道物理題,求甲比乙先解答完的概率;
(3)現(xiàn)從選擇做物理題的8名女生中任意選取兩人,對他們的解答情況進行全程研究,記甲、乙兩女生被抽到的人數(shù)為X,求X的分布列和數(shù)學期望.
附表及公式:
P(K2?k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

同步練習冊答案