【題目】如圖,在四棱錐中,平面平面,是等邊三角形,已知,

(1)設(shè)上的一點,證明:平面平面;

(2)求四棱錐的體積.

【答案】(1)見解析(2)

【解析】試題分析:

(1)證得ADBD,而面PAD⊥面ABCD,∴BD⊥面PAD,∴面MBD⊥面PAD.

(2)作輔助線POAD,PO為四棱錐PABCD的高,求得S四邊形ABCD=24.VPABCD=16.

試題解析:

(1)證明:在△ABD中,∵AD=4,BD=8,AB=4,∴AD2BD2AB2.∴ADBD.

又∵面PAD⊥面ABCD,面PAD∩面ABCDAD,BDABCD,∴BD⊥面PAD.

BDBDM,∴面MBD⊥面PAD.

(2)解:過PPOAD,

∵面PAD⊥面ABCD,∴PO⊥面ABCD,即PO為四棱錐PABCD的高.

又△PAD是邊長為4的等邊三角形,∴PO=2.

在底面四邊形ABCD中,ABDC,AB=2DC,∴四邊形ABCD為梯形.

在Rt△ADB中,斜邊AB邊上的高為,此即為梯形的高.

S四邊形ABCD×=24.

VPABCD×24×2=16.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(改編)已知數(shù)列滿足 , .

(1)若, , ,求實數(shù)的取值范圍;

(2)設(shè)數(shù)列滿足: , ,設(shè),若 ,求的取值范圍;

(3)若成公比的等比數(shù)列,且,求正整數(shù)的最大值,以及取最大值時相應(yīng)數(shù)列的公比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某同學(xué)用“五點法”畫函數(shù)fx)=Asin(ωx+φ)(ω>0,|φ|<)在某一個周期內(nèi)的圖象時,列表并填入了部分?jǐn)?shù)據(jù),如下表:

ωx

0

π

x

Asin(ωx+φ)

0

3

0

-3

0

(1)請將上表數(shù)據(jù)補充完整,填寫在答題卡上相應(yīng)位置,并直接寫出函數(shù)fx)的解析式;

(2)令g(x)=f (x+)-,當(dāng)x∈[, ]時,恒有不等式g(x)-a-3<0成立,求實數(shù)a的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列滿足

(I)求數(shù)列的通項公式;

(II)求數(shù)列的前n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時,求滿足的取值;

(2)若函數(shù)是定義在上的奇函數(shù)

①存在,不等式有解,求的取值范圍;

②若函數(shù)滿足,若對任意,不等式恒成立,求實數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知ABC的頂點C在直線3x﹣y=0上,頂點A、B的坐標(biāo)分別為(4,2),(0,5).

)求過點A且在x,y軸上的截距相等的直線方程;

)若ABC的面積為10,求頂點C的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

1的極值;

2,當(dāng)時,在區(qū)間內(nèi)存在極值,求整數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的圖像是由函數(shù)的圖像經(jīng)如下變換得到:先將圖像上所有點的縱坐標(biāo)伸長到原來的2倍橫坐標(biāo)不變,再將所得到的圖像向右平移個單位長度.

求函數(shù)的解析式,并求其圖像的對稱軸方程;

已知關(guān)于的方程內(nèi)有兩個不同的解

1求實數(shù)m的取值范圍;

2證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

當(dāng)求函數(shù)在區(qū)間上的極值;

當(dāng)時,函數(shù)只有一個零點,求正數(shù)的值.

查看答案和解析>>

同步練習(xí)冊答案