【題目】已知函數(shù).

(1)求和函數(shù)的極值;

(2)若關(guān)于的方程有3個不同實根,求實數(shù)的取值范圍;

(3)直線為曲線的切線,且經(jīng)過原點,求直線的方程.

【答案】(1)當, 取極大值0,當時,取極小值(2)(3)直線的方程.

【解析】試題分析:(1)求導,賦值,解得,可得進而得的極值.

(2)若關(guān)于的方程有3個不同實根轉(zhuǎn)化為有三個不同的交點,結(jié)合函數(shù)圖象可知,所以.

(3)未知切點,因此設切點為,寫出切線方程為,由切線過,求得,即得切線方程.

試題解析:(1)解:由,求導,則,解得,

, ,

,解得, ,由變化,

則當 取極大值0,當時,取極小值

(2)解:由題意可知: 有三個不同的交點,由函數(shù)圖象可知,所以.

(3)解:設切點,切線斜率,則切線方程,由切線過,則,解得,

,切線,切線方程,

,切點,切線,切線方程,直線的方程.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在直角坐標系中,曲線曲線為參數(shù)), 以坐標原點為極點,軸的正半軸為極軸建立極坐標系.

(1)求曲線的極坐標方程;

(2)若射線分別交兩點, 的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知{an}是等差數(shù)列,{bn}是等比數(shù)列,且b2=3,b3=9,a1=b1,a14=b4.

(1)求{an}的通項公式;

(2)設cn=an+bn,求數(shù)列{cn}的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知過點A(0,1)且斜率為k的直線l與圓C:(x-2)2+(y-3)2=1交于M,N兩點.

(1)求k的取值范圍;

(2)若=12,其中O為坐標原點,求|MN|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】葫蘆島市某工廠黨委為了研究手機對年輕職工工作和生活的影響情況做了一項調(diào)查:在廠內(nèi)用簡單隨機抽樣方法抽取了30名25歲至35歲的職工,對其“每十天累計看手機時間”(單位:小時)進行調(diào)查,得到莖葉圖如下.所抽取的男職工“每十天累計看手機時間”的平均值和所抽取的女生 “每十天累計看手機時間”的中位數(shù)分別是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某少數(shù)民族的刺繡有著悠久的歷史,如圖(1),(2),(3),(4)為最簡單的四個圖案,這些圖案都是由小正方形構(gòu)成,小正方形數(shù)越多刺繡越漂亮.現(xiàn)按同樣的規(guī)律刺繡(小正方形的擺放規(guī)律相同),設第個圖形包含個小正方形.

(1)求出的值;

(2)利用合情推理的“歸納推理思想”,歸納出之間的關(guān)系式,并根據(jù)你得到的關(guān)系式求出的表達式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了解學生身高情況,某校以的比例對全校1000名學生按性別進行分層抽樣調(diào)查,已知男女比例為,測得男生身高情況的頻率分布直方圖(如圖所示):

(1)計算所抽取的男生人數(shù),并估計男生身高的中位數(shù)(保留兩位小數(shù));

(2)從樣本中身高在之間的男生中任選2人,求至少有1人身高在之間的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,以原點為極點,x軸的正半軸為極軸建立極坐標系,已知曲線C:ρsin2θ=2acos θ(a>0),過點P(-2,-4)的直線l: (t為參數(shù))與曲線C相交于M,N兩點.

(1)求曲線C的直角坐標方程和直線l的普通方程;

(2)若|PM|,|MN|,|PN|成等比數(shù)列,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,橢圓的左、右焦點分別為, 也是拋物線的焦點,點M在第一象限的交點,且.

1)求的方程;

2)平面上的點N滿足,直線,且與交于A,B兩點,若,求直線的方程.

查看答案和解析>>

同步練習冊答案