如圖,F(xiàn)1、F2是橢圓
x2
a2
+
y2
b2
=1的兩個(gè)焦點(diǎn),O為坐標(biāo)原點(diǎn),P是橢圓上的一點(diǎn),且滿足|F1F2|=2|OP|,若∠PF2F1=5∠PF1F2,則橢圓的離心率為( 。
A、
3
2
B、
6
3
C、
2
2
D、
2
3
考點(diǎn):橢圓的簡單性質(zhì)
專題:圓錐曲線的定義、性質(zhì)與方程
分析:根據(jù)題意可知∠F1PF2=90°,∠PF1F2=5∠PF2F1,進(jìn)而求得∠PF1F2和∠PF2F1,在Rt△PF1F2分別表示出|PF1|和|PF2|,進(jìn)而根據(jù)橢圓的定義表示出a,進(jìn)而求得a和c的關(guān)系,即橢圓的離心率.
解答: 解:∵|F1F2|=2|OP|,O是F1F2的中點(diǎn),
∴∠F1PF2=90°
∵∠PF1F2=5∠PF2F1
∴∠PF1F2=15°,∠PF2F1=75°
∴|PF1|=|F1F2|sin∠PF2F1=2c•sin75°,∴|PF2|=|F1F2|sin∠PF1F2=2c•sin15°,
∴2a=|PF1|+|PF2|=2c•sin75°+2c•sin15°=4csin45°cos30°=
6
c
∴a=
6
2
c
∴e=
c
a
=
6
3

故選B.
點(diǎn)評:本題主要考查了橢圓的簡單性質(zhì).涉及了圓的性質(zhì),解三角形問題等.考查了學(xué)生綜合分析問題的能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

等差數(shù)列{an}中,a1+a2=2,a7+a8=8,該數(shù)列前十項(xiàng)的和S10=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某種細(xì)胞每隔30分鐘分裂1次,1個(gè)分裂成2個(gè),則1個(gè)這樣的細(xì)胞經(jīng)過4小時(shí)30分鐘后,可得到的細(xì)胞個(gè)數(shù)為(  )
A、512B、511
C、1024D、1023

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖甲、乙所示,回答下列問題.

(1)沿圖中虛線將它們折疊起來,是哪一種幾何體,試用文字描述.
(2)需要多少個(gè)這樣的幾何體才能拼成一個(gè)棱長為6cm的長方體?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

橢圓
x2
25
+
y2
9
=1的焦點(diǎn)為F1,F(xiàn)2,
(1)P為橢圓上的一點(diǎn),已知
PF1
PF2
=0,求△F1PF2的面積;
(2)動點(diǎn)P在橢圓的一動點(diǎn),定點(diǎn)M(8,0),求PM中點(diǎn)Q軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

蒸汽機(jī)飛輪的直徑為1.4m,以每小時(shí)按逆時(shí)針方向旋轉(zhuǎn)2400轉(zhuǎn).求:
(1)飛輪每秒鐘轉(zhuǎn)過的弧度數(shù);
(2)輪周上一點(diǎn)每秒鐘經(jīng)過的弧長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式
1
x-3
≥2的解集為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法錯(cuò)誤的是( 。
A、若命題p:?x∈R,x2-x+1=0,則?p:?x∈R,x2-x+1≠0
B、命題“若a=0,則ab=0”的否命題是:“若a≠0,則ab≠0”
C、若y=f(x)為偶函數(shù),則y=f(x+2 )的圖象關(guān)于直線x=-2對稱
D、“a=1”是“函數(shù)f(x)=x2-2ax+1在區(qū)間[1,+∞)上是增函數(shù)”的充要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,a1=1,Sn=nan-2n(n-1).
(1)求數(shù)列{an}的通項(xiàng)公式an;
(2)設(shè)數(shù)列bn=an-n+1,且{
1
bnbn+1
}的前n項(xiàng)和為Tn,求證:
1
4
≤Tn
1
3

查看答案和解析>>

同步練習(xí)冊答案