已知點(diǎn)是雙曲線和圓的一個(gè)交點(diǎn),是雙曲線的兩個(gè)焦點(diǎn),,則雙曲線的離心率為
A. | B. | C.2 | D. |
A
解析試題分析:∵雙曲線方程為,
∴雙曲線的焦點(diǎn)坐標(biāo)為F1(-c,0)、F2(c,0),其中c=,
∵圓方程為x2+y2=a2+b2,即x2+y2=c2
∴該半徑等于c,且圓經(jīng)過(guò)F1和F2.
∵點(diǎn)P是雙曲線與圓x2+y2=a2+b2的交點(diǎn),
∴△PF1F2中,|OP|=c=|F1F2|,可得∠F1PF2=90°,∵∠PF2F1=2∠PF1F2,且∠PF2F1+∠PF1F2=90°,
∴∠PF1F2=30°,且∠PF2F1=60°,由此可得|PF1|=c,|PF2|=c,
根據(jù)雙曲線定義,可得2a=|PF1|-|PF2|=(-1)c,
∴雙曲線的離心率e=,故選A。
考點(diǎn):本題主要考查雙曲線的幾何性質(zhì),圓的性質(zhì)。
點(diǎn)評(píng):中檔題,在已知焦點(diǎn)三角形中的角度關(guān)系下求雙曲線的離心率,往往需要探究三角形的特征,結(jié)合雙曲線的定義,建立方程(組)加以解答。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
已知雙曲線的左右焦點(diǎn)分別為,為雙曲線的離心率,P是雙曲線右支上的點(diǎn),的內(nèi)切圓的圓心為I,過(guò)作直線PI的垂線,垂足為B,則OB=
A.a(chǎn) | B.b | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
已知橢圓的離心率為.雙曲線的漸近線與橢圓有四個(gè)交點(diǎn),以這四個(gè)交點(diǎn)為頂點(diǎn)的四邊形的面積為16,則橢圓的方程為( )
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
存在兩條直線與雙曲線相交于ABCD四點(diǎn),若四邊形ABCD是正方形,則雙曲線的離心率的取值范圍為( )
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
已知橢圓上的一點(diǎn)到橢圓一個(gè)焦點(diǎn)的距離為,則到另一焦點(diǎn)距離為
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
過(guò)雙曲線的左焦點(diǎn)作圓的切線交雙曲線右支于點(diǎn),切點(diǎn)為,若,則雙曲線的離心率為
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
過(guò)雙曲線的右頂點(diǎn)A作斜率為一1的直線,該直線與雙曲線的兩條漸近線的交點(diǎn)分別為B,C,若A,B,C三點(diǎn)的橫坐標(biāo)成等比數(shù)列,則雙曲線的離心率為
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
已知直線與拋物線相交于兩點(diǎn),F(xiàn)為拋物線的焦點(diǎn),若,則k的值為( )。
A. | B. | C. | D. |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com