18.在平面直角坐標系中,已知點P(-2,2),對于任意不全為零的實數(shù)a、b,直線l:a(x-1)+b(y+2)=0,若點P到直線l的距離為d,則d的取值范圍是[0,5].

分析 由題意,直線過定點Q(1,-2),PQ⊥l時,d取得最大值$\sqrt{(1+2)^{2}+(-2-2)^{2}}$=5,直線l過P時,d取得最小值0,可得結(jié)論.

解答 解:由題意,直線過定點Q(1,-2),PQ⊥l時,d取得最大值$\sqrt{(1+2)^{2}+(-2-2)^{2}}$=5,
直線l過P時,d取得最小值0,
∴d的取值范圍[0,5],
故答案為[0,5].

點評 本題考查求d的取值范圍,正確運用點到直線的距離公式是關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知數(shù)列{an}的前項n和為Sn,a1=1,Sn與-3Sn+1的等差中項是$-\frac{3}{2}$.
(1)證明數(shù)列{Sn-$\frac{3}{2}$}為等比數(shù)列;
(2)求數(shù)列{an}的通項公式;
(3)若對任意正整數(shù)n,不等式k≤Sn恒成立,求實數(shù)k的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知F1、F2為雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點,點P在C的漸進線上,PF1⊥x軸,若△PF1F2為等腰直角三角形,則C的離心率為(  )
A.$\sqrt{5}$B.$\frac{\sqrt{5}}{2}$C.$\sqrt{2}$+1D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow$=(2,-3),若m$\overrightarrow{a}$+$\overrightarrow$與3$\overrightarrow{a}$-$\overrightarrow$共線,則實數(shù)m=( 。
A.-3B.3C.-$\frac{25}{19}$D.$\frac{25}{19}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知首項為1公差為2的等差數(shù)列{an},其前n項和為Sn,則$\lim_{n→∞}\frac{{{{({a_n})}^2}}}{S_n}$=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知函數(shù)$f(x)=\frac{{{e^x}-{e^{-x}}}}{2}$,x1、x2、x3∈R,且x1+x2>0,x2+x3>0,x3+x1>0,則f(x1)+f(x2)+f(x3)的值( 。
A.一定等于零B.一定大于零C.一定小于零D.正負都有可能

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知復(fù)數(shù)z1=3+4i,z2=t+i(其中i為虛數(shù)單位),且${z_1}•\overline{z_2}$是實數(shù),則實數(shù)t等于$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.設(shè)等差數(shù)列{an}的各項都是正數(shù),前n項和為Sn,公差為d.若數(shù)列$\left\{{\sqrt{S_n}}\right\}$也是公差為d的等差數(shù)列,則{an}的通項公式為an=$\frac{2n-1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.設(shè)函數(shù)f(x)=$\frac{{a{x^3}}}{3}-b{x^2}+{a^2}x-\frac{1}{3}$在x=1處取得極值為0,則a+b=-$\frac{7}{9}$.

查看答案和解析>>

同步練習冊答案