7.設(shè)等差數(shù)列{an}的各項(xiàng)都是正數(shù),前n項(xiàng)和為Sn,公差為d.若數(shù)列$\left\{{\sqrt{S_n}}\right\}$也是公差為d的等差數(shù)列,則{an}的通項(xiàng)公式為an=$\frac{2n-1}{4}$.

分析 由題意可得:Sn=na1+$\frac{n(n-1)}{2}$d.a(chǎn)n>0.$\sqrt{{S}_{n}}$=$\sqrt{{a}_{1}}$+(n-1)d,化簡n≠1時(shí)可得:a1=(n-1)d2+2$\sqrt{{a}_{1}}$d-$\frac{n}{2}$d.分別令n=2,3,解出即可得出.

解答 解:由題意可得:Sn=na1+$\frac{n(n-1)}{2}$d.a(chǎn)n>0.
$\sqrt{{S}_{n}}$=$\sqrt{{a}_{1}}$+(n-1)d,可得:Sn=a1+(n-1)2d2+2$\sqrt{{a}_{1}}$(n-1)d.
∴na1+$\frac{n(n-1)}{2}$d=a1+(n-1)2d2+2$\sqrt{{a}_{1}}$(n-1)d.
n≠1時(shí)可得:a1=(n-1)d2+2$\sqrt{{a}_{1}}$d-$\frac{n}{2}$d.
分別令n=2,3,可得:a1=d2+2$\sqrt{{a}_{1}}$d-d,a1=2d2+2$\sqrt{{a}_{1}}$d-$\frac{3}{2}$d.
解得a1=$\frac{1}{4}$,d=$\frac{1}{2}$.
∴an=$\frac{1}{4}$+$\frac{1}{2}$(n-1)=$\frac{2n-1}{4}$.
故答案為:$\frac{2n-1}{4}$.

點(diǎn)評 本題考查了等差數(shù)列的通項(xiàng)公式與求和公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,已知橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,它的兩條準(zhǔn)線間的距離為$\frac{8\sqrt{6}}{3}$,且離心率為$\frac{\sqrt{3}}{2}$,過點(diǎn)M(0,2)的直線l與橢圓相交于不同的兩點(diǎn)P,Q,點(diǎn)N在線段PQ上.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)$\frac{|PM|}{|PN|}$=$\frac{|MQ|}{|NQ|}$=λ,若直線l與y軸不重合,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.在平面直角坐標(biāo)系中,已知點(diǎn)P(-2,2),對于任意不全為零的實(shí)數(shù)a、b,直線l:a(x-1)+b(y+2)=0,若點(diǎn)P到直線l的距離為d,則d的取值范圍是[0,5].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.若從正八邊形的8個(gè)頂點(diǎn)中隨機(jī)選取3個(gè)頂點(diǎn),則以它們作為頂點(diǎn)的三角形是直角三角形的概率是$\frac{3}{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.設(shè)f-1(x)為$f(x)=\frac{2x}{x+1}$的反函數(shù),則f-1(1)=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知${(x-\frac{a}{x})^7}$展開式中x3的系數(shù)為84,則正實(shí)數(shù)a的值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.設(shè)函數(shù)$f(x)=cos({2x+\frac{π}{3}})+{sin^2}x$.
(1)求函數(shù)y=f(x)的最大值和最小正周期;
(2)設(shè)A、B、C為△ABC的三個(gè)內(nèi)角,若$cosB=\frac{1}{3}$,$f({\frac{C}{3}})=-\frac{1}{4}$,求sinA.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知直線l的參數(shù)方程為$\left\{\begin{array}{l}x=tcosα\\ y=1+tsinα\end{array}\right.$(t為參數(shù),$\frac{π}{2}≤α<π$),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,圓C的極坐標(biāo)方程為ρ=2cosθ.
(Ⅰ)討論直線l與圓C的公共點(diǎn)個(gè)數(shù);
(Ⅱ)過極點(diǎn)作直線l的垂線,垂足為P,求點(diǎn)P的軌跡與圓C相交所得弦長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.隨著“全面二孩”政策推行,我市將迎來生育高峰,今年新春伊始,各醫(yī)院產(chǎn)科就已經(jīng)一片忙碌,至今熱度不減,衛(wèi)生部門進(jìn)行調(diào)查統(tǒng)計(jì),期間發(fā)現(xiàn)各醫(yī)院的新生兒中,不少都是“二孩”,在人民醫(yī)院,共有50個(gè)寶寶降生,其中25個(gè)是“二孩”寶寶;博愛醫(yī)院共有30個(gè)寶寶降生,其中10個(gè)是“二孩”寶寶.
(1)根據(jù)以上數(shù)據(jù),完成下面的2×2列聯(lián)表,并判斷是否有90%的把握認(rèn)為一孩或二孩寶寶的出生與醫(yī)院有關(guān)?
 一孩二孩合計(jì)
人民醫(yī)院   
博愛醫(yī)院   
合計(jì)   
(2)從兩個(gè)醫(yī)院當(dāng)前出生的所有寶寶中按分層抽樣方法抽取8個(gè)寶寶做健康咨詢,若從這8個(gè)寶寶抽取兩個(gè)寶寶進(jìn)行體檢.求這兩個(gè)寶寶恰好都是來自人民醫(yī)院的概率.
附:${K^2}=\frac{{n{{({αb-bc})}^2}}}{{({α+b})({c+d})({α+c})({b+d})}}$
P(k2>k00.40.250.150.10
k00.7081.3232.0722.706

查看答案和解析>>

同步練習(xí)冊答案