分析 由題意可得:Sn=na1+$\frac{n(n-1)}{2}$d.a(chǎn)n>0.$\sqrt{{S}_{n}}$=$\sqrt{{a}_{1}}$+(n-1)d,化簡n≠1時(shí)可得:a1=(n-1)d2+2$\sqrt{{a}_{1}}$d-$\frac{n}{2}$d.分別令n=2,3,解出即可得出.
解答 解:由題意可得:Sn=na1+$\frac{n(n-1)}{2}$d.a(chǎn)n>0.
$\sqrt{{S}_{n}}$=$\sqrt{{a}_{1}}$+(n-1)d,可得:Sn=a1+(n-1)2d2+2$\sqrt{{a}_{1}}$(n-1)d.
∴na1+$\frac{n(n-1)}{2}$d=a1+(n-1)2d2+2$\sqrt{{a}_{1}}$(n-1)d.
n≠1時(shí)可得:a1=(n-1)d2+2$\sqrt{{a}_{1}}$d-$\frac{n}{2}$d.
分別令n=2,3,可得:a1=d2+2$\sqrt{{a}_{1}}$d-d,a1=2d2+2$\sqrt{{a}_{1}}$d-$\frac{3}{2}$d.
解得a1=$\frac{1}{4}$,d=$\frac{1}{2}$.
∴an=$\frac{1}{4}$+$\frac{1}{2}$(n-1)=$\frac{2n-1}{4}$.
故答案為:$\frac{2n-1}{4}$.
點(diǎn)評 本題考查了等差數(shù)列的通項(xiàng)公式與求和公式,考查了推理能力與計(jì)算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
一孩 | 二孩 | 合計(jì) | |
人民醫(yī)院 | |||
博愛醫(yī)院 | |||
合計(jì) |
P(k2>k0) | 0.4 | 0.25 | 0.15 | 0.10 |
k0 | 0.708 | 1.323 | 2.072 | 2.706 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com