【題目】網(wǎng)上購物是用戶使用手機(jī)或電腦對(duì)所消費(fèi)的商品或服務(wù)進(jìn)行網(wǎng)絡(luò)賬務(wù)支付的一種服務(wù)方式,外賣、購物、買票等等我們生活的各個(gè)方面都可以通過網(wǎng)上來實(shí)現(xiàn),某網(wǎng)絡(luò)公司通過隨機(jī)問卷調(diào)查,得到不同年齡段的網(wǎng)民在網(wǎng)上購物的情況.并從參與調(diào)查者中隨機(jī)抽取了.經(jīng)統(tǒng)計(jì)得到如下表格:

年齡()

頻數(shù)

在網(wǎng)上購物的人數(shù)

若把年齡大于或等于而小于歲的視為青少年,把年齡大于或等于而小于歲的視為中年.把年齡大于或等于歲的視為老年,將頻率視為概率.求:

1)在青少年,中年,老年中,哪個(gè)群休網(wǎng)上購物的概率最大?

2)現(xiàn)從某市青少年網(wǎng)民(人數(shù)眾多)中隨機(jī)抽取人,設(shè)其中網(wǎng)上購物的人數(shù)為.求隨機(jī)變量的分布列及期望.

【答案】1)青少年;(2)分布列見解析,3

【解析】

根據(jù)表中的數(shù)據(jù),分別求出青少年,中年,老年網(wǎng)上購物的頻率,用頻率估計(jì)概率即可;

由題意知,,利用二項(xiàng)分布的概率公式分別求所對(duì)值的概率,列出分布列并代入期望公式求解即可.

由表中的數(shù)據(jù)知,青少年網(wǎng)上購物的概率為,

中年網(wǎng)上購物的概率為: ,老年網(wǎng)上購物的概率為

故青少年網(wǎng)上購物的概率最大.

由題意知,

所以,

,

,

,

分布列為:

的期望為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)是拋物線的焦點(diǎn),點(diǎn)為拋物線的對(duì)稱軸與其準(zhǔn)線的交點(diǎn),過作拋物線的切線,切點(diǎn)為,若點(diǎn)恰好在以,為焦點(diǎn)的雙曲線上,則雙曲線的離心率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】每逢節(jié)日,電商之間的價(jià)格廝殺已經(jīng)不是什么新鮮事,今年的618日也不例外.某電商在618日之后,隨機(jī)抽取100名顧客進(jìn)行回訪,按顧客的年齡分成6組,得到如下頻數(shù)分布表:

顧客年齡

頻數(shù)

4

24

32

20

16

4

1)在下表中作出這些數(shù)據(jù)的頻率分布直方圖;

2)用分層抽樣的方法從這100名顧客中抽取25人,再從抽取的25人中隨機(jī)抽取2人,求年齡在內(nèi)的顧客人數(shù)的分布列、數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù),當(dāng)時(shí),有恒成立,則實(shí)數(shù)m的取值范圍是 ( 。

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率,且橢圓過點(diǎn)

1)求橢圓的標(biāo)準(zhǔn)方程;

2)設(shè)直線交于、兩點(diǎn),點(diǎn)在橢圓上,是坐標(biāo)原點(diǎn),若,判定四邊形的面積是否為定值?若為定值,求出該定值;如果不是,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線的參數(shù)方程為, 為參數(shù)),曲線的極坐標(biāo)方程為.

(1)將曲線的極坐標(biāo)方程化為直角坐標(biāo)方程,并說明曲線的形狀;

(2)若直線經(jīng)過點(diǎn),求直線被曲線截得的線段的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知自變量為的函數(shù)的極大值點(diǎn)為,,為自然對(duì)數(shù)的底數(shù).

1)若,證明:有且僅有2個(gè)零點(diǎn);

2)若,,,,為任意正實(shí)數(shù),證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】唐代詩人李頎的詩《古從軍行》開頭兩句說:“白日登山望烽火,黃昏飲馬傍交河.詩中隱含著一個(gè)有趣的數(shù)學(xué)問題——“將軍飲馬”,即將軍在觀望烽火之后從山腳下某處出發(fā),先到河邊飲馬再回到軍營(yíng),怎樣走才能使總路程最短?在如圖所示的直角坐標(biāo)系xOy,設(shè)軍營(yíng)所在平面區(qū)域?yàn)?/span>{(x,y)|x2+y2},河岸線所在直線方程為x+2y-4=0.假定將軍從點(diǎn)P(,)處出發(fā),只要到達(dá)軍營(yíng)所在區(qū)域即回到軍營(yíng),當(dāng)將軍選擇最短路程時(shí),飲馬點(diǎn)A的縱坐標(biāo)為______.最短總路程為______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】新冠肺炎疫情期間,為了減少外出聚集,“線上買菜”受追捧.某電商平臺(tái)在地區(qū)隨機(jī)抽取了位居民進(jìn)行調(diào)研,獲得了他們每個(gè)人近七天“線上買菜”消費(fèi)總金額(單位:元),整理得到如圖所示頻率分布直方圖.

1)求的值;

2)從“線上買菜”消費(fèi)總金額不低于元的被調(diào)研居民中,隨機(jī)抽取位給予獎(jiǎng)品,求這位“線上買菜”消費(fèi)總金額均低于元的概率;

3)若地區(qū)有萬居民,該平臺(tái)為了促進(jìn)消費(fèi),擬對(duì)消費(fèi)總金額不到平均水平一半的居民投放每人元的電子補(bǔ)貼.假設(shè)每組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代替,試根據(jù)上述頻率分布直方圖,估計(jì)該平臺(tái)在地區(qū)擬投放的電子補(bǔ)貼總金額.

查看答案和解析>>

同步練習(xí)冊(cè)答案