9.已知集合M={x|3x-x2>0},N={x|x2-4x+3>0},則M∩N=( 。
A.(0,1)B.(1,3)C.(0,3)D.(3,+∞)

分析 分別求出M與N中不等式的解集確定出M與N,找出兩集合的交集即可.

解答 解:由M中不等式變形得:x(x-3)<0,
解得:0<x<3,即M=(0,3),
由N中不等式變形得:(x-1)(x-3)>0,
解得:x<1或x>3,即N=(-∞,1)∪(3,+∞),
則M∩N=(0,1),
故選:A.

點(diǎn)評 此題考查了交集及其運(yùn)算,熟練掌握交集的定義是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.設(shè)等差數(shù)列{an}的前n項和為Sn,且S5=5S2,2a1+1=a3
(1)求數(shù)列{an}的通項公式;
(2)設(shè)數(shù)列bn=$\frac{1}{{a}_{n}{a}_{n+1}}$,求{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知拋物線C1:y2=2px(p>0)過第四象限的點(diǎn)M,直線l:2x-$\sqrt{2}$y-2=0過拋物線C1的焦點(diǎn)F.若|MF|=3,則以M為圓心,且與直線l相切的圓的方程為( 。
A.(x-2)2+(y+2$\sqrt{2}$)2=8B.(x-2)2+(y+2$\sqrt{2}$)2=64C.(x-2)2+(y+2$\sqrt{2}$)2=6D.(x-2)2+(y+2$\sqrt{2}$)2=36

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若向量$\overrightarrow a$=(4,2,4),$\overrightarrow b$=(6,3,-2),則(2$\overrightarrow a$-3$\overrightarrow b$)•($\overrightarrow a$+2$\overrightarrow b$)=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知正項等比數(shù)列{an}中,2a1+a2=a3,3a6=8a1a3
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)bn=log2a1+log2a2+…+log2an-nlog23,求數(shù)列{bn}的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知1≤x≤100,xy2=100,u=(lgx)2+a(lgy)2(a是常數(shù),a∈R)
①寫出u關(guān)于y的函數(shù)解析式.
②求u的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.在直角坐標(biāo)系xOy中,直線l:$\left\{\begin{array}{l}{x=-\sqrt{2}+tcosθ}\\{y=tsinθ}\end{array}\right.$(t為參數(shù)),其中0≤θ≤π,橢圓C:$\left\{\begin{array}{l}{x=\sqrt{3}cosφ}\\{y=sinφ}\end{array}\right.$(φ為參數(shù)),其中0≤φ<2π,直線l與y軸的正半軸交于點(diǎn)M,與橢圓C交于A,B兩點(diǎn),其中點(diǎn)A在第一象限.
(1)寫出橢圓C的普通方程及點(diǎn)M對應(yīng)的參數(shù)tM(用θ表示);
(2)設(shè)橢圓C的左焦點(diǎn)F1,若|F1B|=|AM|,求直線l的傾斜角θ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.下列命題正確的個數(shù)是( 。
①命題“?x0∈R,x02+1>3x0”的否定是“?x∈R,x2+1≤3x”;
②已知a=log47,b=log23,c=0.2-0.6,則a<b<c;
③“平面向量$\overrightarrow{a}$與$\overrightarrow$的夾角是鈍角”的充分必要條件是“$\overrightarrow{a}$•$\overrightarrow$<0”;
④已知數(shù)列{an}為等比數(shù)列,則a1<a2<a3是數(shù)列{an}為遞增數(shù)列的必要條件.
A.3個B.4個C.1個D.2個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若復(fù)數(shù)z滿足z=1+$\frac{1}{i}$(i為虛數(shù)單位),則復(fù)數(shù)z的共軛復(fù)數(shù)|$\overline{z}$|的模為( 。
A.0B.1C.$\sqrt{2}$D.2

查看答案和解析>>

同步練習(xí)冊答案