3.[普通高中]觀察下列圖形:…由此規(guī)律,則第30個圖形比第27個圖形中的“☆”多( 。
A.59顆B.60顆C.87顆D.89顆

分析 歸納出an=1+2+…+n=$\frac{n(n+1)}{2}$,即可求出第30個圖形比第27個圖形中的“☆”多的個數(shù).

解答 解:設(shè)第n個圖形,“☆”的個數(shù)為an,則
a1=1,a2=3=1+2,a3=6=1+2+3,an=1+2+…+n=$\frac{n(n+1)}{2}$,
∴第30個圖形比第27個圖形中的“☆”多$\frac{30×31}{2}$-$\frac{27×28}{2}$=87.
故選:C.

點評 本題考查了規(guī)律型:圖形的變化類:通過從一些特殊的圖形變化中發(fā)現(xiàn)不變的因素或按規(guī)律變化的因素,然后推廣到一般情況.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.在平面直角坐標(biāo)系xOy中,已知曲線C的參數(shù)方程為$\left\{{\begin{array}{l}{x=cosα}\\{y=sinα}\end{array}}$,(α為參數(shù)).以直角坐標(biāo)系原點O為極點,x軸的正半軸為極軸建立極坐標(biāo)系,點M的極坐標(biāo)為(4,$\frac{π}{2}$),直線l的傾斜角為$\frac{π}{3}$,直線l過點M.
(1),試寫出直線l的極坐標(biāo)方程,并試求曲線C上的點到直線l距離的最大值;
(2)把曲線C上點的橫坐標(biāo)擴大到原來的3倍,縱坐標(biāo)擴大到原來的2倍,得到曲線C1,若過點E(1,0)與直線l平行的直線l′,交曲線C1于A,B兩點,試求|EA|•|EB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.計算1+2+1,1+2+3+2+1,1+2+3+4+3+2+1,則猜想:1+2+3+…+(n-1)+n+(n+1)+n+…+3+2+1=n2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,在四棱錐P-ABCD中,ABCD是菱形,PA⊥平面ABCD
(1)求證:BD⊥PC;
(2)若平面PBC與平面PAD的交線為l,求證:BC∥l.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知在四棱錐S-ABCD中,底面ABCD是菱形,且∠BCD=60°,側(cè)面SAB是正三角形,且面SAB⊥面ABCD,F(xiàn)為SD的中點.
(1)證明:SB∥面ACF;
(2)求面SBC與面SAD所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=cos2(x-$\frac{π}{6}}$)-cos2x.
(1)求f(x)的最小正周期及單調(diào)增區(qū)間;
(2)求f(x)在區(qū)間[-$\frac{π}{3},\frac{π}{4}}$]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖所示,AB是⊙O的直徑,G為AB延長線上的一點,GCD是⊙O的割線,過點G作AB的垂線,交AC的延長線于點E,交AD的延長線于點F.求證:
(Ⅰ)GB•GA=GE•GF;
(Ⅱ)若AD=GB=OA=1,求GE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)當(dāng)x=θ時,函數(shù)f(x)=sinx-2cosx取得最大值,則cosθ=( 。
A.$\frac{2\sqrt{5}}{5}$B.$\frac{\sqrt{5}}{5}$C.-$\frac{2\sqrt{5}}{5}$D.-$\frac{\sqrt{5}}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知f(x)=|x2-1|+x2+kx在(0,2)上有兩個零點,則實數(shù)k的取值范圍是(1,$\frac{7}{2}$).

查看答案和解析>>

同步練習(xí)冊答案