已知函數(shù),且函數(shù)在點處的切線方程為.
(Ⅰ)求函數(shù)的解析式;
(Ⅱ)設(shè)點,當(dāng)時,直線的斜率恒小于,試求實數(shù)的取值范圍;
(Ⅲ)證明:.

(Ⅰ);(Ⅱ);(Ⅲ)詳見解析.

解析試題分析:(Ⅰ)根據(jù)函數(shù)在點處的切線方程為,這一條件分離出兩個條件,然后根據(jù)這兩個條件列有關(guān)的二元一次方程組,解出的值進而確定函數(shù)的解析式;(Ⅱ)先將直線的斜率利用點的坐標(biāo)表示,然后建立以為自變量的函數(shù),對參數(shù)進行分類討論,即可求出參數(shù)的取值范圍;(Ⅲ)證明不等式,構(gòu)造函數(shù)
,等價轉(zhuǎn)化為,借助極小值,但同時需要注意有些時候相應(yīng)整體的代換.
試題解析:(Ⅰ),.   1分
函數(shù)在點處的切線方程為,
  即, 解得,   2分
.     3分
(Ⅱ)由、,得,
∴“當(dāng)時,直線的斜率恒小于當(dāng)時,恒成立恒成立.   4分
.
,   5分
(。┊(dāng)時,由,知恒成立,
單調(diào)遞增,
,不滿足題意的要求.   6分
(ⅱ)當(dāng)時,,,

∴當(dāng) ,;當(dāng),.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖所示,將一矩形花壇擴建成一個更大的矩形花壇,要求的延長線上,的延長線上,且對角線點.已知米,米。

(1)設(shè)(單位:米),要使花壇的面積大于32平方米,求的取值范圍;
(2)若(單位:米),則當(dāng),的長度分別是多少時,花壇的面積最大?并求出最大面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(1)若函數(shù)的圖象在處的切線斜率為,求實數(shù)的值;
(2)在(1)的條件下,求函數(shù)的單調(diào)區(qū)間;
(3)若函數(shù)上是減函數(shù),求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù),
(1)求函數(shù)的極大值;
(2)記的導(dǎo)函數(shù)為,若時,恒有成立,試確定實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知常數(shù)、都是實數(shù),函數(shù)的導(dǎo)函數(shù)為的解集為
(Ⅰ)若的極大值等于,求的極小值;
(Ⅱ)設(shè)不等式的解集為集合,當(dāng)時,函數(shù)只有一個零點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)F(x )=x2+aln(x+1)
(I)若函數(shù)y=f(x)在區(qū)間[1,+∞)上是單調(diào)遞增函數(shù),求實數(shù)a的取值范圍;
(II)若函數(shù)y=f(x)有兩個極值點x1,x2,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)為常數(shù)),且在點處的切線平行于軸.
(Ⅰ)求實數(shù)的值;
(Ⅱ)求函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)   
(Ⅰ)若時有極值,求實數(shù)的值和的單調(diào)區(qū)間;
(Ⅱ)若在定義域上是增函數(shù),求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(I)證明當(dāng) 
(II)若不等式取值范圍.

查看答案和解析>>

同步練習(xí)冊答案